WJNSE  Vol.2 No.4 , December 2012
New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature
ABSTRACT
We propose a novel analytical model to describe the drain-source current as well as gate-source of single-electron transistors (SETs) at high temperature. Our model consists on summing the tunnel current and thermionic contribution. This model will be compared with another model.

Cite this paper
A. Touati, S. Chatbouri, N. Sghaier and A. Kalboussi, "New Model for Drain and Gate Current of Single-Electron Transistor at High Temperature," World Journal of Nano Science and Engineering, Vol. 2 No. 4, 2012, pp. 171-175. doi: 10.4236/wjnse.2012.24022.
References
[1]   http://www.itrs.net/Links/2009ITRS/

[2]   http://www.intel.com/technology/mooreslaw/

[3]   C. Wassuber, H. Kosina and S. Selbertherr, “SIMON—A Simulator for Single-Electron Tunnel Devices and Circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 9, 1997, pp. 937-944. Hdoi:10.1109/43.658562

[4]   R. H. Chen, “MOSES: A General Monte Carlo Simulator for Single-Electronic Circuits,” The Electrochemical Society, Vol. 96-2, 1996, p. 576.

[5]   K. Uchida, K. Matsuzawa, J. Koga, R. Ohba, S. Takagi and A. Toriumi, “Analytical Single-Electron Transistor (SET) Model for Design and Analysis of Realistic SET Circuits,” Japanese Journal of Applied Physics, Vol. 39, Part 1, No. 4B, 2000, pp. 2321-2324. Hdoi:10.1143/JJAP.39.2321H

[6]   H. Inokawa and Y. Takahashi, “A Compact Analytical Model for Asymmetric Single-Electron Tunneling Transistors,” IEEE Transactions on Electron Devices, Vol. 50, No. 2, 2003, pp. 455-461. Hdoi:10.1109/TED.2002.808554

[7]   S. Mahapatra, V. Vaish, C. Wasshuber, K. Banerjee and A. M. Ionescu, “Analytical Modeling of Single Electron Transistor for Hybrid CMOS-SET Analog IC Design,” IEEE Transactions on Electron Devices, Vol. 51, No. 11, 2004, pp. 1772-1782. Hdoi:10.1109/TED.2004.837369

[8]   T. Dittrich, P. H?nggie, G. L. Ingold, B. Kramer, G. Sch??n and W. Zwerger, “Quantum Transport and Dissipation,” Wiley-VCH, Berlin, 1998.

[9]   C. Delerue and M. Lanno, “Nanostructures: Theory and Modelling,” Springer, Berlin, 2004.

[10]   D. V. Averin and K. K. Likharev, “Mesoscopic Phenomena in Solids,” Elsevier, Amsterdam, 1991.

[11]   S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices,” 3rd Edition, John Wiley & Sons, New Jersey, 2007.

[12]   C. Dubuc, J. Beauvais and D. Drouin, “A Nanodamascene Process for Advanced Single-Electron Transistor Fabrication,” IEEE Transactions on Nanotechnology, Vol. 7, No. 1, 2008, pp. 68-73.

[13]   A. Beaumont, C. Dubuc, J. Beauvais and D. Drouin, “A Nanodamascene Process for Advanced Single-Electron Transistor Fabrication,” IEEE Transactions on Nanotechnologyon, Vol. 7, No. 1, 2009, pp. 68-73. doi:10.1109/TNANO.2007.91343010

[14]   C. Dubuc, A. Beaumont, J. Beauvais and D. Drouin, “Current Conduction Models in the High Temperature Single-Electron Transistor,” Solid-State Electronics, Vol. 53, No. 5, 2009, pp. 478-482. Hdoi:10.1016/j.sse.2009.03.003

[15]   J. H. Werner and H. H. Guttler, “Barrier Inhomogeneities at Schottky Contacts,” Journal of Applied Physics, Vol. 69, No. 3, 1991, pp. 1522-1533. Hdoi:10.1063/1.347243

 
 
Top