OJAppS  Vol.2 No.4 , December 2012
Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode
Electrochemical oxidation of ammonia was studied with an objective to enhance the selectivity of ammonia to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which various cathodes and Ti/RuO 2-Pt anode were assembled. In the present study, anodic oxidation of ammonia and cathodic reduction of by-products were achieved, especially with Cu/Zn as cathode. In the presence of 1.0 g/L NaCl the ammonia-N decreased from 100.0 to 0 after 120 min electrolysis at current density of 30 mA/cm2, and no nitrite was detected in the treated solution. The lowest amount of nitrate was formed with Cu/Zn as cathode during electrolysis due to its high reduction ability. Initial pH range from 7 and 9 and uncontrolled temperature were favorable for electrochemical ammonia oxidation and the ammonia oxidation rates with Cu/Zn cathode was higher than that with Ti and Fe cathode. The reduction rate increased with increasing current density in the range of 5 - 50 mA/cm2. As ammonia could be completely removed by the simultaneous oxidation and reduction in this study, it is suitable for deep treatment of ammonia polluted water.

Cite this paper
Y. Wang, X. Guo, J. Li, Y. Yang, Z. Lei and Z. Zhang, "Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO2-Pt Anode," Open Journal of Applied Sciences, Vol. 2 No. 4, 2012, pp. 241-247. doi: 10.4236/ojapps.2012.24036.
[1]   G. Tchobanoglous, F. L. B. H. D. Stensel and Metcalf & Eddy, “Wastewater Engineering: Treatment and Reuse,” 4th Edition, McGraw-Hill, New York, 2004.

[2]   T. A. Larsen, M. M. K. M. Udert and J. Lienert, “Nutrient Cycles and Resource Management: Implications for the Choice of Wastewater Treatment Technology,” Water Science and Technology, Vol. 56, No. 5, 2007, pp. 229237. doi:10.2166/wst.2007.576

[3]   Y. Fernández-Nava, E. Mara?ón, J. Soons and L. Castrillón, “Denitrification of Wastewater Containing High Nitrate and Calcium Concentrations,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 7976-7981. doi:10.1016/j.biortech.2008.03.048

[4]   Y. Liu, L. Li and R. Goel, “Kinetic Study of Electrolytic Ammonia Removal Using Ti/IrO2 as Anode under Different Experimental Conditions,” Journal of Hazardous Materials, Vol. 167, No. 1-3, 2009, pp. 959-965. doi:10.1016/j.jhazmat.2009.01.082

[5]   S.-J. Park and S.-Y. Jin, “Effect of Ozone Treatment on Ammonia Removal of Activated Carbons,” Journal of Colloid and Interface Science, Vol. 286, No. 1, 2005, pp. 417-419. doi:10.1016/j.jcis.2005.01.043

[6]   M. Ramírez, J. M. Gómez, G. Aroca and D. Cantero, “Removal of Ammonia by Immobilized Nitrosomonas Europaea in a Biotrickling Filter Packed with Polyurethane Foam,” Chemosphere, Vol. 74, No. 10, 2009, pp. 13851390. doi:10.1016/j.chemosphere.2008.11.061

[7]   M. Li, C. P. Feng and Z. Y. Zhang, “Optimization of Electrochemical Ammonia Removal Using Box-Behnken Design,” Journal of Electroanalytical Chemistry, Vol. 657, No. 1-2, 2011, pp. 66-73. doi:10.1016/j.jelechem.2011.03.012

[8]   M. Li, C. P. Feng, Z. Y. Zhang and N. Sugiura, “Efficient Electrochemical Reduction of Nitrate to Nitrogen Using Ti/IrO2-Pt Anode and Different Cathodes,” Electrochimica Acta, Vol. 54, No. 20, 2009, pp. 4600-4606. doi:10.1016/j.electacta.2009.03.064

[9]   G. H. Zhao, Y. G. Zhang, Y. Z. Lei, B. Y. Lv, J. X. Gao, Y. A. Zhang and D. M. Li, “Fabrication and Electrochemical Treatment Application of a Novel Lead Dioxide Anode with Superhydrophohic Surfaces, High Oxygen Evolution Potential, and Oxidation Capability,” Environment Science Technology, Vol. 44, No. 5, 2010, pp. 1754-1759. doi:10.1021/es902336d

[10]   J. H. Qu and X. Zhao, “Design of BDD-TiO2 Hybrid Electrode with P-N Function for Photoelectrocatalytic Degradation of Organic Contaminants,” Environment Science Technology, Vol. 42, No. 13, 2008, pp. 4934-4939. doi:10.1021/es702769p

[11]   A. Kapa?ka, A. Katsaounis and A. Leonidova, “Ammonia Oxidation to Nitrogen Mediated by Electrogenerated Active Chlorine on Ti/PtOx-IrO2,” Electrochemistry Communications, Vol. 12, No. 9, 2010, pp. 1203-1205. doi:10.1016/j.elecom.2010.06.019

[12]   A. Kapa?ka, L. Joss and C. Comninellis, “Direct and Mediated Electrochemical Oxidation of Ammonia on Boron-Doped Diamond Electrode,” Electrochemistry Communications, Vol. 12, No. 12, 2010, pp. 1714-1717. doi:10.1016/j.elecom.2010.10.004

[13]   N.-L. Michels, A. Kapalka and A. A. Abd-El-Latif, “Enhanced Ammonia Oxidation on BDD Induced by Inhibition of Oxygen Evolution Reaction,” Electrochemistry Communications, Vol. 12, No. 9, 2010, pp. 1199-1202. doi:10.1016/j.elecom.2010.06.018

[14]   L. Candido and J. A. C. P. Gomes, “Evaluation of Anode Materials for the Electro-Oxidation of Ammonia and Ammonium Ions,” Materials Chemistry and Physics, Vol. 129, No. 3, 2011, pp. 1146-1151. doi:10.1016/j.matchemphys.2011.05.080

[15]   Z. Du, H. Li and T. Gu, “A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy,” Biotechnology Advances, Vol. 25, No. 5, 2007, pp. 464-482. doi:10.1016/j.biotechadv.2007.05.004

[16]   S. H. Lin and C. L. Wu, “Electrochemical Removal of Nitrite and Ammonia for Aquaculture,” Water Research, Vol. 30, No. 3, 1996, pp. 715-721. doi:10.1016/0043-1354(95)00208-1

[17]   M. Li, C. P. Feng and Z. Y. Zhang, “Simultaneous Reduction of Nitrate and Oxidation of By-Products Using Electrochemical Method,” Journal of Hazardous Materials, Vol. 171, No. 1-3, 2009, pp. 724-730. doi:10.1016/j.jhazmat.2009.06.066

[18]   M. Li, C. P. Feng and Z. Y. Zhang, “Application of an Electrochemical-Ion Exchange Reactor for Ammonia Removal,” Electrochimica Acta, Vol. 55, No. 1, 2009, pp. 159-164. doi:10.1016/j.electacta.2009.08.027

[19]   Y. Deng and J. D. Englehardt, “Electrochemical Oxidation for Landfill Leachate Treatment,” Waste Management, Vol. 27, No. 3, 2007, pp. 380-388. doi:10.1016/j.wasman.2006.02.004

[20]   M. Li, C. P. Feng and Z. Y. Zhang, “Electrochemical Reduction of Nitrate Using Various Anodes and a Cu/Zn Cathode,” Electrochemistry Communications, Vol. 11, No. 10, 2009, pp. 1853-1856. doi:10.1016/j.elecom.2009.08.001

[21]   K.-W. Kim, “The Electrolytic Decomposition Mechanism of Ammonia to Nitrogen at an IrO2 Anode,” Electrochimica Acta, Vol. 50, No. 22, 2005, pp. 4356-4364. doi:10.1016/j.electacta.2005.01.046

[22]   S. Xiao, J. Qu and X. Zhao, “Electrochemical Process Combined with UV Light Irradiation for Synergistic Degradation of Ammonia in Chloride-Containing Solutions,” Water Research, Vol. 43, No. 5, 2009, pp. 1432-1440. doi:10.1016/j.watres.2008.12.023

[23]   G. Chen, “Electrochemical Technologies in Wastewater Treatment,” Separation and Purification Technology, Vol. 38, No. 1, 2004, pp. 11-41. doi:10.1016/j.seppur.2003.10.006

[24]   Y. Vanlangendonck, D. Corbisier and A. Van Lierde, “Influence of Operating Conditions on the Ammonia Electro-Oxidation Rate in Wastewaters from Power Plants (ELONITA? technique),” Water Research, Vol. 39, No. 13, 2005, pp. 3028-3034. doi:10.1016/j.watres.2005.05.013

[25]   B. Rumpf, A. P.-S. Kamps, R. Sing and G. Maurer, “Simultaneous Solubility of Ammonia and Hydrogen Sulfide in Water at Temperatures from 313 K to 393 K,” Fluid Phase Equilibria, Vol. 158-160, 1999, pp. 923-932. doi:10.1016/S0378-3812(99)00110-7

[26]   A. G. Vlyssides, “Electrochemical Treatment in Relation to pH of Domestic Wastewater Using Ti/Pt Electrodes,” Journal of Hazardous Materials, Vol. 95, No. 1-2, 2002, pp. 215-226. doi:10.1016/S0304-3894(02)00143-7

[27]   L.-C. Chiang, J.-E. Chang and T.-C. Wen, “Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate,” Water Research, Vol. 29, No. 2, 1995, pp. 671-678. doi:10.1016/0043-1354(94)00146-X

[28]   L. Li and Y. Liu, “Ammonia Removal in Electrochemical Oxidation: Mechanism and Pseudo-Kinetics,” Journal of Hazardous Materials, Vol. 161, No. 2-3, 2009, pp. 10101016. doi:10.1016/j.jhazmat.2008.04.047

[29]   A. H. Mahvi, “Performance Evaluation of a Continuous Bipolar Electrocoagulation/Electrooxidation—Electroflotation (ECEO-EF) Reactor Designed for Simultaneous Removal of Ammonia and Phosphate from Wastewater Effluent,” Journal of Hazardous Materials, Vol. 192, No. 3, 2011, pp. 1267-1274. doi:10.1016/j.jhazmat.2011.06.041

[30]   S. K?rner, S. K. Das and S. Veenstra, “The Effect of pH Variation at the Ammonium/Ammonia Equilibrium in Wastewater and Its Toxicity to Lemna Gibba,” Aquatic Botany, Vol. 71, No. 1, 2001, pp. 71-78. doi:10.1016/S0304-3770(01)00158-9