OJAppS  Vol.2 No.4 , December 2012
Optical, Photophysical, Stability and Mirrorless Lasing Properties of Novel Fluorescein Derivative Dye in Solution
ABSTRACT
Novel laser dye, allyl 2-(6-(allyloxy)-3-oxo-3H-xanthen-9-yl) benzoate [diallyl-fluorescein] has been synthesized. Its chemical structure was confirmed by 1HNMR, IR, MS and elemental analysis. Its optical properties were experimentally investigated. The amplified spontaneous emission (ASE) efficiency was 0.29% in case of new dye while it was 0.23% in case of fluorescein by pumping the dye samples with a 532 nm (7 ns) pulsed Nd:YAG laser. Also, the thermal and photostability techniques confirmed the higher stability of new laser dye.

Cite this paper
M. Abou-Kana, "Optical, Photophysical, Stability and Mirrorless Lasing Properties of Novel Fluorescein Derivative Dye in Solution," Open Journal of Applied Sciences, Vol. 2 No. 4, 2012, pp. 228-235. doi: 10.4236/ojapps.2012.24034.
References
[1]   M. A. lvarez, F. Amat-Guerri, A. Costela, I. Garc?a-Moreno, M. Liras and R. Sastre, “Laser Emission from Mixtures of Dipyrromethene Dyes in Liquid Solution and in Solid Polymeric Matrices,” Optics Communications, Vol. 267, No. 2, 2006, pp. 469-479. doi:10.1016/j.optcom.2006.06.059

[2]   J. Ringling, O. Kittelmann, F. Noack, U. Stamm, J. Kleinschmidt and F. Voss, “High-Repetition-Rate High-Power Femtosecond ArF Laser Source,” Optics Letters, Vol. 19, No. 20, 1994, pp. 1639-1641. doi:10.1364/OL.19.001639

[3]   F. López Arbeloa, T. López Arbeloa, I. López Arbeloa, I. García-Moreno, A. Costela, R. Sastre and F. Amat-Guerri, “Correlations between Photophysics and Lasing Properties of Dipyrromethene—BF2 Dyes in Solution,” Chemical Physics Letters, Vol. 299, No. 3-4, 1999, pp. 315-321. doi:10.1016/S0009-2614(98)01281-0

[4]   J. H. Boyer, A. Haag, M.-L. Soong, K. Thangaraj and T. G. Pavlopoulos, “First-Order Sources in First-Order Systems: Second-Order Correlations: Errata,” Applied Optics, Vol. 30, No. 27, 1991, p. 3788. doi:10.1364/AO.30.003788

[5]   J. H. Boyer, A. Haag, G. Sathyamoorthi, M.-L. Soong, K. Thangaraj and T. G. Pavlopoulos, “Pyrromethene—BF2 Complexes as Laser Dyes,” Heteroatom Chemistry, Vol. 4, No. , 1993, pp. 39-49. doi:10.1002/hc.520040107

[6]   S. A. Azim, S. M. Al-Hazmy, E. M. Ebeid and S. A. El-Daly, “A New Coumarin Laser Dye 3-(Benzothiazol2-yl)-7-Hydroxycoumarin,” Optics & Laser Technology, Vol. 37, No. 3, 2005, pp. 245-249. doi:10.1016/j.optlastec.2004.04.003

[7]   M. R. Padlye, T. S. Varadarian and A. V. Deshande, “Some New Laser Dyes—Solvent Effect on QE and Lasing Action,” Spectroscopy Letters: An International Journal for Rapid Communication, Vol. 15, No. 8, 1982, pp. 597-608. doi:10.1080/00387018208068016

[8]   V. Masilamani and B. M. Sivaram, “The Laser Gain Characteristics of Some Substituted Coumarins,” Journal of Luminescence, Vol. 27, No. 2, 1982, pp. 137-145. doi:10.1016/0022-2313(82)90015-1

[9]   R. Giri, S. S. Rathi, M. K. Machwe and V. S. Murti, “Effect of Substituents on the Fluorescence and Absorption Spectra of Coumarins,” Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 44, No. 8, 1988, pp. 805-807. doi:10.1016/0584-8539(88)80146-6

[10]   A. Ramalingam, P. K. Palanisomy, V. Masilamani and B. M. Sivaram, “Dual Amplified Spontaneous Emission from 7-Amino-4-Methyl Coumarin Dye,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 49, No. 1-2, 1989, pp. 89-96. doi:10.1016/1010-6030(89) 87108-4

[11]   S. A. Al-Hazmy, K. N. Kassab, S. A. El-Daly and E. M. Ebeid, “Spectral Properties of (5-Phenyl-1,3,4-Oxadiazol2-yl)-7-Hydroxycoumarin (POHC),” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 56, No. 9, 2000, pp. 1773-1780. doi:10.1016/S1386-1425(00)00231-6

[12]   A. Costela, Garc′?a-Moreno, M. Pintado-Sierra, F. AmatGuerri, M. Liras, R. Sastre, F. Lo′ pez Arbeloa, J. Ban? uelos Prieto and I. Lo′ pez Arbeloa, “New Laser Dye Based on the 3-Styryl Analog of the BODIPY dye PM567, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 198, No. 2-3, 2008, pp. 192-199. doi:10.1016/j.jphotochem.2008.03.010,

[13]   R. Ziessel, C. Goze, G. Ulrich, M. Cesario, P. Retailleau, A. Harriman and J. P. Rostron, “Intramolecular Energy Transfer in Pyrene—Bodipy Molecular Dyads and Triads,” Chemistry: A European Journal, Vol. 11, No. 24, 2005, pp. 7366-7378. doi:10.1002/chem.200500373

[14]   M. Baruah, W. Quin, R. A. L. Vallee, D. Beljonne, T. Rohand, W. Dehaen and N. Boens, “A Highly PotassiumSelective Ratiometric Fluorescent Indicator Based on BODIPY Azacrown Ether Excitable with Visible Light,” Organic Letters, Vol. 7, No. 20, 2005, pp. 4377-4380. doi:10.1021/ol051603o

[15]   Z. Dost, S. Atildan and E. U. Akkaya, “Distyryl-BoradiAzaindacenes: Facile Synthesis of Novel near IR Emitting Fluorophores,” Tetrahedron, Vol. 62, No. 36, 2006, pp. 8484-8488. doi:10.1016/j.tet.2006.06.082

[16]   T. Rohand, M. Baruah, W. Quin, N. Boens and W. Dehaen, “Functionalisation of Fluorescent BODIPY Dyes by Nucleophilic Substitution,” Chemical Communications, Vol. 42, No. 3, 2006, pp. 266-268. doi:10.1039/b512756d

[17]   A. Coskun, E. Deniz and E. U. Akkaya, “Effective PET and ICT Switching of Boradiazaindacene Emission:? A Unimolecular, Emission-Mode, Molecular Half-Subtractor with Reconfigurable Logic Gates,” Organic Letters, Vol. 7, No. 23, 2005, pp. 5187-5189. doi:10.1021/ol052020h

[18]   N. Saki, T. Dinic and E. U. Akkaya, “Excimer Emission and Energy Transfer in Cofacial Boradiazaindacene (BODIPY) Dimers Built on a Xanthene Scaffold,” Tetrahedron, Vol. 62, No. 11, 2006, pp. 2721-2725. doi:10.1016/j.tet.2005.12.021

[19]   A. Costela, I. García-Moreno, C. Go′mez, F. Amat-Guerri and R. Sastre, “Efficient and Stable Dye Laser Action from Modified Dipyrromethene BF2 Complexes,” Applied Physics Letters, Vol. 79. No. 3, 2001, pp. 305-307. doi:10.1063/1.1385185

[20]   A. Costela, I. García-Moreno, C. Gomez, R. Sastre, F. Amat-Guerri, M. Liras, F. Lo′pez Arbeloa, J. Ban?uelos Prieto and I. Lo′ pez Arbeloa, “Photophysical and Lasing Properties of New Analogs of the Boron—Dipyrromethene Laser Dye PM567 in Liquid Solution,” The Journal of Physical Chemistry A, Vol. 106, No. 34, 2002, pp. 77367742. doi:10.1021/jp0209897

[21]   A. Costela, I. García-Moreno, C. Gomez, F. Amat-Guerri, M. Liras and R. Sastre, “Efficient and Highly Photostable Solid-State Dye Lasers Based on Modified Dipyrromethene BF2 Complexes Incorporated into Solid Matrices of Poly(Methyl Methacrylate),” Applied Physics B, Vol. 76, No. 4, 2003, pp. 365-369. doi:10.1007/s00340-003-1139-1

[22]   F. Lo′pez Arbeloa, J. Ban?uelos Prieto, I. Lo′pez Arbeloa, A. Costela, I. García-Moreno, C. Gomez, F. Amat-Guerri, M. Liras and R. Sastre, “Photophysical and Lasing Properties of New Analogs of the Boro—Dipyrromethene Laser Dye Pyrromethene 567 Incorporated into or Covalently Bounded to Solid Matrices of Poly(methyl methacrylate),” Photochemistry and Photobiology, Vol. 78, No. 1, 2003, pp. 30-36. doi:10.1562/0031-8655

[23]   I. García-Moreno, A. Costela, L. Campo, R. Sastre, F. Amat-Guerri, M. Liras, F. Lo′pez Arbeloa, J. Ban?uelos Prieto and I. Lo′pez Arbeloa, “8-Phenyl-Substituted Dipyrromethene?BF2 Complexes as Highly Efficient and Photostable Laser Dyes, The Journal of Physical Chemistry A, Vol. 108, No. 16, 2004, pp. 3315-3323. doi:10.1021/jp0312464

[24]   M. Alvarez, F. Amat-Guerri, A. Costela, I. García-Moreno, C. Gomez, M. Liras and R. Sastre, “Linear and CrossLinked Polymeric Solid-State Dye Lasers Based on 8-Substituted Alkyl Analogues of Pyrromethene 567,” Applied Physics B, Vol. 80, No. 8, 2005, pp. 993-1006. doi:10.1007/s00340-005-1833-2

[25]   A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reibenspies and K. Burgess, “3,5-Diaryl-4,4-Difluoro-4Bora-3a,4a-Diaza-s-Indacene (BODIPY) Dyes:? Synthesis, Spectroscopic, Electrochemical, and Structural Properties,” Organic Chemistry, Vol. 64, No. 21, 1999, pp. 78137819. doi:10.1021/jo990796o

[26]   J. Chen, A. Burghart, A. Derecskei-Kovacs and K. Burgess, “4,4-Difluoro-4-Bora-3a,4a-Diaza-s-Indacene (BODIPY) Dyes Modified for Extended Conjugation and Restricted Bond Rotations,” The Journal of Organic Chemistry, Vol. 65, No. 10, 2000, pp. 2900-2906. doi:10.1021/jo991927o

[27]   H. Kim, A. Burghart, M. B.Welch, J. Reibenspies and K. Burgess, “Synthesis and Spectroscopic Properties of a New 4-Bora-3a,4a-Diaza-s-Indacene (BODIPY?) Dye,” Chemistry Communications, Vol. 35, No. 18, 1999, pp. 18891890. doi:10.1039/a905739k

[28]   J. Chen, J. Reibenspies, A. Derecskei-Kovacs and K. Burgess, “Through-Space 13C-19F Coupling Can Reveal Conformations of Modified BODIPY Dyes,” Chemistry Communications, Vol. 35, No. 24, 1999, pp. 2501-2502. doi:10.1039/a907559c

[29]   K. Rurack, M. Kollmannberger and J. Daub, “A Highly Efficient Sensor Molecule Emitting in the Near Infrared (NIR): 3,5-Distyryl-8-(p-Dimethylaminophenyl) Difluo-roboradiaza-s-indacene,” New Journal of Chemistry, Vol. 25, No. 2, 2001, pp. 289-292. doi:10.1039/b007379m

[30]   K. Rurack, M. Kollmannsberger and J. Daub, “Molecular Switching in the Near Infrared (NIR) with a Functionalized Boronz—Dipyrromethene Dye,” Angewandte Chemie International Edition, Vol. 40, No. 2, 2001, pp. 385387.

[31]   W. Zhao and E. M. Carreira, “Conformationally Restricted Aza-Bodipy: A Highly Fluorescent, Stable, Near-Infrared Absorbing Dye,” Angewandte Chemie International Edition, Vol. 44, No. 11, 2005, pp. 1677-1679. doi:10.1002/anie.200461868

[32]   H. A. S. Al-Shamiri, M. T. H. Abou Kana, I. M. Azzouz and A. H. M. Elwahy, “Photo-Physical Properties and Amplified Spontaneous Emission of a New Derivative of Fluorescein,” Optics Communications, Vol. 283, No. 7, 2010, pp. 1438-1444. doi:10.1016/j.optcom.2009.12.028

[33]   M. T. H. A. Kana, H. A. S. Al-Shamiri, I. M. Azzouz and A. H. M. Elwahy, “Spectroscopic Properties and Amplified Spontaneous Emission of a New Derivative of Fluorescein,” Applied Physics B, Vol. 88, No. 4, 2007, pp. 575-580. doi:10.1007/s00340-007-2727-2

[34]   J. V. Morris, M. A. Mahaney and J. R. Huber, “Fluorescence Quantum Yield Determinations. 9,10-Diphenylanthracene as a Reference Standard in Different Solvents,” The Journal of Physical Chemistry, Vol. 80, No. 9, 1976, pp. 969-974. doi:10.1021/j100550a010

[35]   J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. Review,” The Journal of Physical Chemistry, Vol. 75, No. 8, 1971, pp. 991-1024. doi:10.1021/j100678a001

[36]   J. Q. Umberger and V. K. LaMer, “The Kinetics of Diffusion Controlled Molecular and Ionic Reactions in Solution as Determined by Measurements of the Quenching of Fluorescence,” Journal of American Chemical Society, Vol. 67, No. 7, 1945, pp. 1099-1109. doi:10.1021/ja01223a023

[37]   S. Speiser and F. L. Chisena, “Optical Bistability in Fluorescein Dye,” Applied Physics B, Vol. 45, No. 3, 1988, pp. 137-144. doi:10.1007/BF00695282

[38]   T. D. Z. Atvars, C. A. Bortolato and D. D. Bruneli, “Electronic Absorption and Fluorescence Spectra of Xanthene dyes in Polymers,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 68, No. 1, 1991, pp. 41-50. doi:10.1016/1010-6030(92)85016-N

[39]   B. B. Raju and T. S. Varadrajan, “Photophysical Properties and Energy Transfer Dye Laser Characteristics of 7-Diethylamino-3-Heteroaryl Coumarin in Solution,” Laser Chemistry, Vol. 16, No. 2, 1995, pp. 109-120. doi:10.1155/1995/51920

[40]   A. Costela, J. M. Munoz, A. Douhal, J. M. Figuera and A. V. Acune, “Experimental Test of a Four-Level Kinetic Model for Excited-State Intramolecular Proton Transfer Dye Lasers,” Applied Physics B, Vol. 49, No. 6, 1989, pp. 545-552. doi:10.1007/BF00324955

 
 
Top