[1] A. H. Reid, J. K. Taubenberger and T. G. Fanning, “The 1918 Spanish influenza: Integrating History and Biology,” Microbes and Infection, Vol. 3, No. 1, 2001, pp. 81-87. doi:10.1016/S1286-4579(00)01351-4
[2] H. Nicholls, “Pandemic Influenza: The Inside Story,” PLoS Biology, Vol. 4, No. 2, 2006, p. e50.
[3] WHO, “Pandemic (H1N1) 2009—Update 112,” 2010. http://www.who.int/csr/don/2010_08_06/en/
[4] B. G. Hale, R. E. Randall, J. Ortin and D. Jackson, “The Multifunctional NS1 Protein of Influenza A Viruses,” Journal of General Virology, Vol. 89, No. 10, 2008, pp. 2359-2376. doi:10.1099/vir.0.2008/004606-0
[5] R. M. Krug, W. Yuan, D. L. Noah and A. G. Latham, “Intracellular Warfare between Human Influenza Viruses and Human Cells: The Roles of the Viral NS1 Protein,” Virology, Vol. 309, No. 2, 2003, pp. 181-189. doi:10.1016/S0042-6822(03)00119-3
[6] J. Y. Min and R. M. Krug, “The Primary Function of RNA Binding by the Influenza A Virus NS1 Protein in Infected Cells: Inhibiting the 2 - 5 Oligo (A) Synthetase/ RNase L Pathway,” Proceedings of the National Academic of Sciences of the United States of America, Vol. 103, No. 8, 2006, pp. 7100-7105.
[7] Y. K. Shin, Q. Liu, S. K. Tikoo, L. A. Babiuk and Y. Zhou, “Influenza A Virus NS1 Protein Activates the Phosphatidylinositol 3-Kinase (PI3K)/Akt Pathway by Direct Interaction with the P85 Subunit of PI3K,” Journal of General Virology, Vol. 88, No. 1, 2007, pp. 13-18. doi:10.1099/vir.0.82419-0
[8] J. Y. Min, S. Li, G. C. Sen and R. M. Krug, “A Site on the Influenza A Virus NS1 Protein Mediates Both Inhibition of PKR Activation and Temporal Regulation of Viral RNA Synthesis,” Virology, Vol. 363, No. 1, 2007, pp. 236-243. doi:10.1016/j.virol.2007.01.038
[9] O. G. Engelhardt and E. Fodor, “Functional Association between Viral and Cellular Transcription during Influenza Virus Infection,” Reviews in Medical Virology, Vol. 16, No. 5, 2006, pp. 329-345. doi:10.1002/rmv.512
[10] D. L. Noah, K. Y. Twu and R. M. Krug, “Cellular Antiviral Responses against Influenza A Virus Are Countered at the Post Transcriptional Level by the Viral NS1A Protein via Its Binding to a Cellular Protein Required for the 3’End Processing of Cellular Pre-mRNAS,” Virology, Vol. 307, No. 2, 2003, pp. 386-395. doi:10.1016/S0042-6822(02)00127-7
[11] K. Y. Twu, D. L. Noah, P. Rao, R. L. Kuo and R. M. Krug, “The CPSF30 Binding Site on the NS1A Protein of Influenza A Virus Is a Potential Antiviral Target,” Journal of Virology, Vol. 80, No. 8, 2006, pp. 3957-3965. doi:10.1128/JVI.80.8.3957-3965.2006
[12] K. Das, et al., “Structural Basis for Suppression of a Host Antiviral Response by Influenza A Virus,” Proceedings of the National Academy of Sciences, Vol. 105, No. 35, 2008, pp. 13093-13098. doi:10.1073/pnas.0805213105
[13] D. Basu, et al., “Novel Influenza Virus NS1 Antagonists Block Replication and Restore Innate Immune Function,” Journal of Virology, Vol. 83, No. 4, 2008, pp. 1881-1891. doi:10.1128/JVI.01805-08
[14] M. P. Walkiewicz, D. Basu, J. J. Jablonski, H. M. Geysen and D. A. Engel, “Novel Inhibitor of Influenza Non-Structural Protein 1 Blocks Multi-Cycle Replication in an RNase L-Dependent Manner,” Journal of General Virology, Vol. 92, No. 1, 2011, pp. 60-70. doi:10.1099/vir.0.025015-0
[15] R. Guha, et al., “The Blue Obelisk Interoperability in Chemical Informatics,” Journal of Chemical Information and Modeling, Vol. 46, No. 3, 2006, pp. 991-998. doi:10.1021/ci050400b
[16] T. Cheng, et al., “Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge,” Journal of Chemical Information and Modeling, Vol. 47, No. 6, 2007, pp. 2140-2148. doi:10.1021/ci700257y
[17] C. A. Lipinski, “Drug-Like Properties and the Causes of Poor Solubility and Poor Permeability,” Journal of Pharmacological and Toxicological Methods, Vol. 44, No. 1, 2000, pp. 235-249. doi:10.1016/S1056-8719(00)00107-6
[18] H. Ai, et al., “Discovery of Novel Influenza Inhibitors Targeting the Interaction of dsRNA with the NS1 Protein by Structure-Based Virtual Screening,” International Journal of Bioinformatics Research and Applications, Vol. 6, No. 5, 2010, pp. 449-460. doi:10.1504/IJBRA.2010.037985
[19] G. M. Morris, et al., “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry, Vol. 30, No. 16, 2009, pp. 2785-2791. doi:10.1002/jcc.21256
[20] H. Park, J. Lee and S. Lee, “Critical Assessment of the Automated AutoDock as a New Docking Tool for Virtual Screening,” Proteins: Structure, Function, and Bioinformatics, Vol. 65, No. 3, 2006, pp. 549-554. doi:10.1002/prot.21183
[21] M. Larkin, et al., “Clustal W and Clustal X Version 2.0,” Bioinformatics, Vol. 23, No. 21, 2007, pp. 2947-2948. doi:10.1093/bioinformatics/btm404
[22] A. C. Wallace, R. A. Laskowski and J. M. Thornton, “LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions,” Protein Engineering, Vol. 8, No. 2, 1995, pp. 127. doi:10.1093/protein/8.2.127
[23] P. Rice, I. Longden and A. Bleasby, “EMBOSS: The European Molecular Biology Open Software Suite,” Trends in Genetics, Vol. 16, No. 6, 2000, pp. 276-277. doi:10.1016/S0168-9525(00)02024-2
[24] W. L. DeLano, “The PyMOL Molecular Graphics System,” DeLano Scientific LLC, Palo Alto, 2002. http://www.pymol.org