JMMCE  Vol.11 No.11 , November 2012
Mechanical Property Estimation of Similar Weld using Ball Indentation Technique
ABSTRACT
A weld joint is composed of three principal zones viz., base metal, Heat Affected Zone (HAZ), and weld zone. Thus, the variation in mechanical behavior exists not only among these zones, but also from point to point in each individual zone. Being destructive in nature, the conventional method of mechanical testing cannot successfully used to estimate the variation in the mechanical behavior at different zones of the weld joint. Moreover, the conventional method of mechanical testing cannot characterize the material using small amount of material. In this respect, Ball Indentation (BI) methodology was considered to be useful approach, since it can characterize the mechanical properties of a material using very small amount of material in non destructive manner. The present work is an attempt to characterize the variation in the mechanical properties among each zone (global variation), and from point to point in each zone (local variation) of the similar weld joint used in nuclear application using BI approach. For this purpose, the similar weld joint of two SS-304 LN pipe lines was investigated using BI approach.

Cite this paper
H. Khandelwal, K. Sharma and R. Chhibber, "Mechanical Property Estimation of Similar Weld using Ball Indentation Technique," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 11, 2012, pp. 1095-1110. doi: 10.4236/jmmce.2012.1111116.
References
[1]   D. Tabor, “The Hardness of Metals,” Oxford University Press, New York, 1951.

[2]   E. Meyer, “Contribution to the Knowledge of Hardness and Hardness Testing,” Zeitschrift Des Vereines Deutscher Ingenieure, Vol. 52, 1908, pp. 740-835.

[3]   Y. H. Joo, T. Hashida, T. Takahashi and K. Shimomura, “The Use of Small Punch (Bulge) Tests to Estimate Fracture Stress in the Lower Shelf Regime” Journal of Testing and Evaluation, Vol. 20, No. 6, 1992, p. 457.

[4]   K. L. Murty, P. Q. Miraglia, M. D. Mathew, V. N. Shah and F. M. Haggag, “Characterization of Gradients in Mechanical Properties of SA-533B Steel Welds Using Ball Indentation,” International Journal of Pressure Vessels and Piping, Vol. 76, No. 6, 1999, pp. 361-369. doi:10.1016/S0308-0161(99)00006-X

[5]   J. H. Bulloch, “Toughness Losses in Low Alloy Steels at High Temperatures: An Appraisal of Certain Factors Concerning the Small Punch Test,” International Journal of Pressure Vessels and Piping, Vol. 75, No. 11, 1998, pp. 791-804. doi:10.1016/S0308-0161(98)00077-5

[6]   F. M. Haggag, R. K. Nanstad, J. T. Hutton, D. L. Thomas and R.L. Swain, “Use of Automated Ball Indentation Testing to Measure Flow Propertiesand Estimate Fracture Toughness in Metallic Materials” Applications of Auto- mation Technology to Fatigue and Fracture Testing, Vol. 1092, 1990, p. 188. doi:10.1520/STP25039S

[7]   F. M. Haggag, Project No. DOE/ER/821/5-2.

[8]   R. O. Ritchie, W. L. Servern and R. A. Waullaert, “Critical Fracture Stress and Fracture Strain Models for the Prediction of Lower and Upper Shelf Toughness in Nuclear Pressure Vessel Steels,” Metallurgical and Materials Transactions, Vol. 10, No. 10 1979, pp. 1557-1570. doi:10.1007/BF02812022

[9]   T. S. Byun, J. H. Hong, F. M. Haggag, K. Farrell and E. H. Lee, “Measurement of Through-The-Thickness Vari- ations of Mechanical Properties in SA508 Gr.3 Pressure Vessel Steels Using Ball Indentation Test Technique,” In- ternational Journal of Pressure Vessels and Piping, Vol. 74, No. 3, 1997, pp. 231-238. doi:10.1016/S0308-0161(97)00114-2

[10]   T. S. Byun, J. W. Kim and J. H. Hong, “A Theoretical Model for Determination of Fracture Toughness of Reactor Pressure Vessel Steels in the Transition Region from Automated Ball Indentation Test,” Journal of Nuclear Materials, Vol. 252, No. 3, 1998, pp. 187-194. doi:10.1016/S0022-3115(97)00338-3

[11]   F. M. Haggag, T. S. Byun, J. H. Hong, P. Q. Miraglia and K. L. Murty, “Indentation-Energy-To-Fracture (IEF) Parameter for Characterization of DBTT in Carbon Steels Using Nondestructive Automated Ball Indentation (BI) Technique,” Scripta Matetialia, Vol. 38, No. 4, 1998, pp. 645-651. doi:10.1016/S1359-6462(98)00519-3

[12]   H. K. Khandelwal, K. Sharma and R. Chhibber, “Evaluation of Mechanical Behavior of Nuclear Component Materials Using Automated Ball Indentation Approach,” M.E. Thesis, Thapar University, Patiala, 2011.

[13]   K. Sharma, P. K. Singh, V. Bhasin and K. K. Vaze, “Application of Automated Ball Indentation for Property Measurement of Degraded Zr 2.5Nb,” Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No. 7, 2011, pp. 661-669.

[14]   K. Sharma, P. K. Singh, V. Bhasin, K. K. Vaze and A. K. Ghosh, “Numerical Simulation with Finite Element and Artificial Neural Network of Ball Indentation for Mechanical Property Estimation,” Sadhana, Vol. 36, No. 2, 2011, pp. 181-192. doi:10.1007/s12046-011-0019-3

[15]   G. Das, S. Ghosh and S. K. Sahay, “Use of Ball Indenta- tion Technique to Determine the Change of Tensile Properties of SS316L Steel Due to Cold Rolling,” Materials Letters, Vol. 59, No. 18, 2005, pp. 2246-2251. doi:10.1016/j.matlet.2005.01.074

[16]   C. H. Mok, “The Dependence of Yield Stress on Strain Rate as Determined from Ball-indentation Tests,” Experimental Mechanics, Vol. 6, No. 2, 1966, pp. 87-92. doi:10.1007/BF02326226

[17]   C. H. Mok and J. Duffy, “The Dynamic Stress-Strain Re- lation of Metals as Determined from Impact Tests with a Hard Ball,” International Journal of Mechanical Sciences, Vol. 7, No. 5, 1965, pp. 355-366. doi:10.1016/0020-7403(65)90064-0

[18]   M. D. Mathew, K. L. Murty, K. B. S. Rao and S. L. Mannan, “Ball Indentation Studies on the Effect of Aging on Mechanical Behavior of Alloy 625,” Materials Science and Engineering: A, Vol. 264, No. 1-2, 1999, pp. 159-166.

[19]   R. K. Nanstad, F. M. Haggag, J. T. Hutton, D. L. Thomas and R. L. Swain, “Use of Automated Ball Indentation Testing to Measure Flow Properties and Estimate Fracture Toughness in Metallic Materials, Applications of Automation Technology to Fatigue and Fracture Testing,” American Society for Testing and Materials International, Vol. 1092, 1990, pp. 188-208.

 
 
Top