ANP  Vol.1 No.3 , November 2012
Palladium (0) Nanoparticles: A Novel and Reusable Catalyst for the Synthesis of Various Pyran Derivatives
Abstract: A ligand free, Palladium nanoparticles catalyzed synthesis of pyran derivatives using C-H activated compound, malononitrile and aryl aldehyde via Knoevenagel condensation followed by Michael addition reaction using Palladium nanoparticles as catalyst in one-pot is described herein. The advantages of this method lie in its simplicity, low catalyst loading, cost effectiveness and easy to handle. The Palladium Nanoparticles can be reused without loss of activity even after recycling four times. The palladium nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM). The present method also allows us to synthesize highly functionalized title compounds from simple and readily available inputs.
Cite this paper: Saha, M. and Pal, A. (2012) Palladium (0) Nanoparticles: A Novel and Reusable Catalyst for the Synthesis of Various Pyran Derivatives. Advances in Nanoparticles, 1, 61-70. doi: 10.4236/anp.2012.13009.

[1]   L. Bonsignore, G. Loy, D. Secci and A. Calignano, “Synthesis and Pharmacological Activaty of 2-Oxo-(2H)-1- benzopyran-3-carboxamide Derivatives,” European Journal of Medicinal Chemistry, Vol. 28, No. 6, 1993, pp. 517-520.

[2]   W. O. Foye, “Principi Di Chimica farmaceutica,” Piccin, Padova, 1991.

[3]   L. L. Andreani and E. Lapi, “On Some New Esters of Coumarin-3-carboxylic Acid with Balsamic and Bronchodilator Action,” Bollettino chimico farmaceutico, Vol. 99, 1960, pp. 583-586.

[4]   D. Armetso, W. M. Horspool, N. Martin, A. Ramos and C. Seaone, “Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted-2-amino-3,5- dicyano-6-phenyl-4H-pyrans,” The Journal of Organic Chemistry, Vol. 54, No. 11, 1989, pp. 3069-3072.

[5]   E. A. A. Hafez, M. H. Elnagdi, A. G. A. Elagamey and F. M. A. A. Ei-Taweel, “Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c] pyrano[3,2-c]quinoline Derivatives,” Heterocycles, Vol. 26, 1987, pp. 903-907.

[6]   K. Kanagaraj and K. Pitchumani, “Solvent-Free Multicomponent Synthesis of Pyranopyrazoles: Per-6-amino-bcyclodextrin as a Remarkable Catalyst and Host,” Tetrahedron Letters, Vol. 51, No. 25, 2010, pp. 3312- 3316. doi:10.1016/j.tetlet.2010.04.087

[7]   D. Shi, J. Mou, Q. Zhuang, L. Niu, N, Wu and X. Wang, “Three-Component One-Pot Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole Derivatives in Aqueous Media,” Synthetic Communications, Vol. 34, No. 24, 2004, pp. 4557- 4563. doi:10.1081/SCC-200043224

[8]   F. Lehmann, M. Holm and S. Laufer, “Three-Component Combinatorial Synthesis of Novel Dihydropyrano[2,3-c] pyrazoles,” Journal of Combinatorial Chemistry, Vol. 10, No. 3, 2008, pp. 364-367. doi:10.1021/cc800028m

[9]   G. Vasuki, K. Kumaravel, “Rapid Four-Component Reactions in Water: Synthesis of Pyranopyrazoles,” Tetrahedron Letters, Vol.49, No. 39, 2008, pp. 5636-5638. doi:10.1016/j.tetlet.2008.07.055

[10]   R. S. Bhosale, C. V. Magar, K. S. Solanke, S. B. Mane, S. S. Choudhary and R. P. Pawar, “Molecular Iodine: An Efficient Catalyst for the Synthesis of Tetrahydrobenzo[b] pyrans,” Synthetic Communications, Vol. 37, No. 24, 2007, pp. 4353- 4357. doi:10.1080/00397910701578578

[11]   S. Muramulla and C.-G. Zhao, “A New Catalytic Mode of the Modularly Designed Organocatalysts (MDOs): Enantioselective Synthesis of Dihydropyrano[2,3-c]pyrazole,” Tetrahedron Letters, Vol. 52, No. 30, 2011, pp. 3905- 3908. doi:10.1016/j.tetlet.2011.05.092

[12]   J. M. Khurana, B. Nand and P. Saluja, “DBU: A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3,4-Dihydropyrano[3,2-c]chromenes, Dihydropyrano[4,3- b]pyranes, 2-Amino-4hbenzo[h]chromenes and 2-Amino- 4H Benzo[g]chromenes in Aqueous Medium,” Tetrahedron Letters, Vol. 66, 2010, pp. 5637-5641. doi:10.1016/j.tet.2010.05.082

[13]   J.-T. Li, W.-Z. Xu, L.-C. Yang and T.-S. Li, “One-Pot Synthesis of 2-Amino-4-aryl-3-carbalkoxy-7,7-dimethyl- 5,6,7,8-tetrahydrobenzo[b]pyran Derivatives Catalyzed by KF/Basic Al2O3 under Ultrasound Irradiation,” Synthetic Communications, Vol. 34, No. 24, 2004, pp. 4565- 4571. doi:10.1081/SCC-200043233

[14]   X.-S. Wang, M.-M. Zhang, H. Jiang, C.-S. Yao and S.-J. Tu, “Three-Component Green Synthesis of N-Arylqui- noline Derivativesin Ionic Liquid [BmimD][BF4L]: Reactions of Arylaldehyde,3-arylamino-5,5-dimethylcyclohex- 2-enone, and Activemethylene Compounds,” Tetrahedron, Vol. 63, No. 21, 2007, pp. 4439-4449. doi:10.1016/j.tet.2007.03.068

[15]   I. Devi and P. J. Bhuyan, “Sodium Bromide Catalysed One-Pot Synthesis of Tetrahydrobenzo[B]Pyrans via a Three-Component Cyclocondensation under Microwave Irradiation and Solvent Free Conditions,” Tetrahedron Letters, Vol. 45, No. 47, 2004, pp. 8625-8627. doi:10.1016/j.tetlet.2004.09.158

[16]   V. Calo, A. Nacci, A. Monopoli and F. Montingelli, “Pd Nanoparticles as Efficient Catalysts for Suzuki and Stille Coupling Reactions of Aryl Halides in Ionic Liquids,” The Journal of Organic Chemistry, Vol. 70, 2005, pp. 6040-6044.

[17]   B. Baruwati, D. Guin and S. V. Manorama, “Pd on Surface-Modified NiFe2O4Nanoparticles: A Magnetically Recoverable Catalyst for Suzuki and Heck Reactions,” Organic Letters, Vol. 9, No. 26, 2007, pp. 5377-5380. doi:10.1021/ol702064x

[18]   J.-U. Park, J. Heon Lee, U. Paik, Y. Lu and J. A. Rogers, “Nanoscale Patterns of OligonucleotidesFormed by Electrohydrodynamic Jet Printing with Applications in Biosensing and Nanomaterials Assembly,” Nano Letters, Vol. 8, No. 12, 2008, pp. 4210-4216. doi:10.1021/nl801832v

[19]   M. Saha and A. K. Pal, “Palladium(0) Nanoparticles: An Efficient Catalyst for the One-Pot Synthesis of Polyhy- droquinolines,” Tetrahedron Letters, Vol. 52, No. 38, 2011, pp. 4872-4877. doi:10.1016/j.tetlet.2011.07.031

[20]   M. Saha, S. A. K. Pal and S. Nandi, “Pd (0) NPs: A Novel and Reusable Catalyst for the Synthesis of bis(heterocyclyl) methanes in Water,” RSC Advance, Vol. 2, No. 16, 2012, pp. 6397-6400. doi:10.1039/c2ra20445b

[21]   T. M. Razler, Y. Hsiao, F. Qian, R. Fu, R. K. Khan and W. Doubleday, “A Preparatively Convenient Ligand-Free Catalytic PEG 2000 Suzuki-Miyaura Coupling” The Journal of Organic Chemistry, Vol. 74, No. 3, 2009, pp. 1381-1384. doi:10.1021/jo802277z

[22]   Z. Zhang, Z. Zha, C. Gan, C. Pan, Y. Zhou, Z. Wang and M.-M. Zhou, “Catalysis and Regioselectivity of the Aqueous Heck Reaction by Pd(0) Nanoparticles under Ultrasonic Irradiation,” The Journal of Organic Chemistry, Vol. 71, No. 11, 2006, pp. 4339-4342. doi:10.1021/jo060372b

[23]   N. Semagina, A. Renken, D. Laub and L. Kiwi-Minsker, “Synthesis of Monodispersed Palladium Nanoparticles to Study Structure Sensitivity of Solvent-Free Selective Hydrogenation of 2-Methyl-3-butyn-2-ol,” Journal of Catalysis, Vol. 246, No. 2, 2007, pp. 308-314. doi:10.1016/j.jcat.2006.12.011

[24]   D. Srimani, A. Bej and A. Sarkar, “Palladium Nanoparticle Catalyzed Hiyama Coupling Reaction of Benzyl Halides,” The Journal of Organic Chemistry, Vol. 75, No. 12, pp. 4296-4299. doi:10.1021/jo1003373

[25]   M. T. Reetz and M. Maase, “Redox-Controlled Size- Selective Fabrication of Nanostructured Transition Metal Colloids,” Advanced Materials, Vol. 11, No. 9, 1999, pp. 773-777.

[26]   M. T. Reetz and E. Westermann, “Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles,” Angewandte Chemie International Edition, Vol. 39, No. 1, 2000, pp. 165-168.

[27]   L. Adak, K. Chattopadhyay and B. C. Ranu, “Palladium Nanoparticle-Catalyzed C-N Bond Formation. A Highly Regio- and Stereoselective Allylic Amination by Allyl Acetates,” The Journal of Organic Chemistry, Vol. 74, No. 10, 2009, pp. 3982-3985. doi:10.1021/jo9003037

[28]   R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K. Yeung, “Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis,” Accounts of Chemical Research, Vol. 34, No. 3, 2001, pp. 181-190. doi:10.1021/ar000110a

[29]   M. Moreno-Manas and R. Pleixats, “Formation of Carbon-Carbon Bonds under Catalysis by Transition- Metal Nanoparticles,” Accounts of Chemical Research, Vol. 36, No. 8, 2003, pp. 638-643. doi:10.1021/ar020267y