OJPChem  Vol.2 No.4 , November 2012
Chiral Polyamides Having L-Glutamyl Residue as a Component
ABSTRACT
Polyamides with chiral environment were obtained from aromatic diamine, 1,3-phenylenediamine (1,3-PDA) or 1,4- phenylenediamine (1,4-PDA), and N-α-benzoyl-L-glutamic acid (Benzoyl-L-Glu). The optical rotation ([α]D) for 1,3- PDA-Benzoyl-L-Glu was determined to be 3.7 deg cm2 g–1, while that for 1,4-PDA-Benzoyl-L-Glu to be 9.7 deg cm2 g–1. 1,3-PDA-Benzoyl-L-Glu showed adsorption selectivity toward D-Glu and its adsorption selectivity was determined to be 1.68. Contrary to this, 1,4-PDA-Benzoyl-L-Glu showed adsorption selectivity toward L-Glu and the adsorption selectivity toward L-Glu was determined to be 1.33. From those results, those two types of chiral polyamide are expected to applicable to chiral separation or chiral recognition.

Cite this paper
Y. Ikeuchi, M. Yoshikawa, H. Yoshida, H. Yamanishi and S. Sakurai, "Chiral Polyamides Having L-Glutamyl Residue as a Component," Open Journal of Polymer Chemistry, Vol. 2 No. 4, 2012, pp. 125-131. doi: 10.4236/ojpchem.2012.24017.
References
[1]   D. Voet and J. G. Voet, “Biochemistry,” Wiley, New York, 1990.

[2]   T. McKee and J. R. McKee, “The Molecular Basis of Life,” 3rd Edition, WCB/McGraw-Hill, Boston, 2003.

[3]   C. A. M. Afonso and J. G. Grespo, “Recent Advances in Chiral Resolution through Membrane-Based Approaches,” Angewandte Chemie International Edition, Vol. 43, No. 10, 2004, pp. 5293-5295. doi:10.1002/anie.200460037

[4]   N. M. Maier and W. Lindner, “Chiral recognirion application of molecularly imprinted polymers: A critical reciew,” Analytical and Bioanalytical Chemistry, Vol. 389, No. 2, 2007, pp. 377-397. doi:10.1007/s00216-007-1427-4

[5]   R. Xie, L.-Y. Chu and J.-G. Deng, “Membranes and Membrane Processes for Chiral Resolution,” Chemical Society Reviews, Vol. 37, No. 6, 2008, pp. 1243-1263. doi:10.1039/b713350b

[6]   A. Higuchi, M. Tamai, Y.-A. Ko, Y. Tagawa, Y.-H. Wu, B. D. Freeman, J.-T. Bing, Y. Chang and Q.-D. Ling, “Polymeric Membranes for Chiral Separation of Pharmaceuticals and Chemicals,” Polymer Reviews, Vol. 50, No. 2, 2010, pp. 113-143. doi:10.1080/15583721003698853

[7]   M. Yoshikawa, J. Izumi, T. Kitao and S. Sakamoto, “Molecularly Imprinted Polymeric Membranes Containing SISE Derivatives for Optical Resolution of Amino Avids,” Macromolecules, Vo. 29, No. 25, 1996, pp. 81978203. doi:10.1021/ma951716v

[8]   M. Yoshikawa and J. Izumi, “Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adopting Racemates as Print Moleciles,” Macromolecular Bioscience, Vol. 3, No. 9, 2003, pp. 487-498. doi:10.1002/mabi.200350016

[9]   M. Yoshiakwa, Y. Nagai, K. Moriguchi and S. Hiraoka, “Chiral Recogniiton Ability of Oligopeptide Derivatives Consisting of Glutamyl Residues,” Journal of Applied Polymer Science, Vol. 95, No. 6, 2005, pp. 1302-1309. doi:10.1002/app.21307

[10]   Y. Sueyoshi, C. Fukushima and M. HYoshikawa, “Molecularly Imprinted Nanofiber Membranews from Cellulose Acetate Aimed for Chiral Separation,” Journal of Membrane Science, Vol. 357, No. 1-2, 2010, pp. 90-97. doi:10.1016/j.memsci.2010.04.005

[11]   Y. Sueyoshi, A. Utsunomiya, M. Yoshikawa, G. P. Robertson and M. D. Guiver, “Chiral Separation with Molecularly Imprinted Polysulfone-Aldehyde Derivatized Nanofiber Membranes,” Journal of Membrane Science, Vol. 401-402, 2012, pp. 89-96. doi:10.1016/j.memsci.2012.01.033

[12]   M. Nakagawa, Y. Ikeuchi and M. Yoshikawa, “Chiral Separation of Racemic Amino Acids with Novel Polyamide Having N-α-Acetyl-L-glutamyl Residue as a Diacid Component,” Polymer, Vol. 49, No. 21, 2008, pp. 4612-4619. doi:10.1016/j.polymer.2008.08.018

[13]   Y. Ikeuchi, M. Nakagawa, M. Yoshikawa, H. Yoshida and S. Sakurai, “Chiral Polyamides Consisting of N-αBenzoyl-L-Glutamic Acid as a Diacid Component,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 47, No. 10, 2009. pp. 2530-2538. doi:10.1002/pola.23335

[14]   T. Hashimoto and M. Yoshikawa, “Chiral Separation of Racemic Mixtures with Chiral Polyamide Membranes Containing Aspartyl Residues in their Main Chains,” Current Nanoscience, Vol. 7, No. 6, 2011, pp. 915-924. doi:10.2174/157341311798220664

[15]   M. Hatanaka, Y. Nishioka and M. Yoshikawa, “Polyurea with L-Lysinyl Residues as Components: Application to Membrane Separation of Enantiomers,” Macromolecular Chemistry and Physics, Vol. 212, No. 13, 2011, pp. 13511359. doi:10.1002/macp.201100054

[16]   H. Mizushima, M. Yoshikawa, G. P. Robertson and M. D. Guiver, “Optical Resolution Membranes from Polysulfone Bearing Alanine Derivatives as Chiral Selectors,” Macromolecular Materials and Engineering, Vol. 296, No. 6, 2011, pp. 562-567. doi:10.1002/mame.201000396

[17]   M. Yoshikawa, M. Maruhashi, Y. Iwamoto and N. Ogata, “Optical Resolution of Racemic Amino Acids through DNA-Poly(4-vinylbenzoyl)trimethylammonium Polyion Complec Membranes,” Polymer Journal, Vol 39, No. 11, 2007, pp. 1193-1198. doi:10.1295/polymj.PJ2007080

[18]   Y. Sueyoshi, T. Hahsimoto, M. Yoshikawa and K. Watanabe, “Transformation of Intact Chicken Feathers into Chiral Separation Membranes,” Waste Biomass Valor, Vol. 2, No. 3, 2011, pp. 303-307. doi:10.1007/s12649-011-9066-6

[19]   Y. Sueyoshi, T. Hahsimoto, M. Yoshikawa and S. Ifuku, “Chitin Nanofiber Membranes for Chiral Separation,” Journal of Sustainable Agriculture, Vol. 1, No. 1, 2012, pp. 42-47.

[20]   “Dictionary of Organic Compounds,” 4th Edition, Maruzen, Tokyo, 1965, p. 2685.

[21]   “Beilsteins Handbuch der Organischen Chemie,” 13 IV. Springer-Verlag, Berlin, 1973, p.104.

[22]   J. A. Riddick, W. B. Bunger and T. K. Sakano, “Organic Solvents,” 4th Edition, John Wiley & Sons, New York, 1986.

[23]   D. J. Walton and J. P. Lorimer, “Polymers,” Oxford University Press, Oxford, 2000.

[24]   K. Taniwaki, A. Hyakutake, A. Aoki, M. Yoshikawa, M. D. Guiver and G. P. Robertson, “Evaluation of the Recognition Ability of Molecularly Imprinted Materials by Surface Plasmon Resonance (SPR) Spectroscopy,” Analytica Chimica Acta, Vol. 489, No. 2, 2003, pp. 191-198. doi:10.1016/S0003-2670(03)00760-8

 
 
Top