Chance-Constrained Approaches for Multiobjective Stochastic Linear Programming Problems

Show more

References

[1] P. C. Fishburn, “Utility for Decision Making,” John Wiley, New York, 1970.

[2] R. Caballero, E. Cerdà, M. M. Munoz and L. Rey, “Relations among Several Efficiency Concepts in Stochastic Multiple Objective Programming,” In: Y. Y. Haines and R. E. Steuer, Eds., Research and Practice in Multiple Criteria Decision Making, 2000.

[3] R. Caballero, E. Cerdà, M. M. Mu?oz, L. Rey and I. M. “Stancu-Minasian, Efficient Solution Concepts and Their Relations in Stochastic Multiobjective Programming,” Journal of Optimization Theory and Applications, Vol. 110, No. 1, 2001, pp. 53-74.
doi:10.1023/A:1017591412366

[4] P. Rietveld and H. Ouwersloot, “Ordinal Data in Multicriteria Decision Making, a Stochastic Dominance Approach to Sitting Nuclear Power Plants,” European Journal of Operational Research, Vol. 56, No. 2, 1992, pp. 249-262. doi:10.1016/0377-2217(92)90226-Y

[5] H. M. Markowitz, “Mean Variance Analysis in Portfolio choice and Capital Markets,” Basil Blackwell, Oxford, 1970.

[6] B. Liu, “Theory and Practice of Uncertainly Programming,” Physical-Verley, Heidelberg, 2002.

[7] A. S. Adeyefa and M. K. Luhandjula, “Multiobjective Stochastic Linear Programming: An Overview,” American Journal of Operations Research, Vol. 1, No. 4, 2011, pp. 203-213. http://www.SciRP.org/journal/ajor

[8] A. Charnes and W. W. Cooper, “Chance-Constrained Programming,” Management Science, Vol. 6, No. 1, 1959, pp. 73-79. doi:10.1287/mnsc.6.1.73

[9] H. A. Simon, “A Behavior Model of Rational Choice,” In: Models of Man: Social and Rational, Macmillan, New York, 1957.

[10] I. M. Staincu-Minasian, “Overview of Different Approaches for Solving Stochastic Programming Problems with Multiple Objective Functions,” In: S.-Y. Huang and J. Teghem, Eds., Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertaintly, Kluwer Academic Publisher, Dordrecht, 1990.

[11] I. M. Stancu-Minasian, “Stochastic Programming with Multiple Objective Functions,” D. Reidel Publishing Company, Boston, 1984.

[12] P. Kall, “Stochastic Linear Programming,” Springer-Verlag, Berlin, 1972.

[13] S. Kataoka, “A Stochastic Programming Model,” Econometrica, Vol. 31, No. 1-2, 1963, pp. 181-196.

[14] B. Liu, “Introduction to Uncertain Programming,” Tsinghua University, Beijing. 2005. (Unpublished).

[15] J. K. Sengupta, Stochastic Programming: Methods and Applications. North-Holland Publishing Company, Amsterdam, 1972.

[16] G. P. McCormick and K. Ritter, “Methods of Conjugate Directions versus Quasi-Newton Methods,” Mathematical Programming, Vol. 3, No. 1, 1972, pp. 101-116

[17] R. Flecher and C. M. Reeves, “Function Minimization by Conjugate Gradients,” The Computer Journal, Vol. 7, No. 2, 1964, pp. 149-154. doi:10.1093/comjnl/7.2.149

[18] J. P. Evans, F. J. Gould and J. W. Tolle, “Exact Penalty Functions in Nonlinear Programming,” Mathematical Programming, Vol. 4, No. 1, 1973, pp. 72-79.
doi:10.1007/BF01584647

[19] A. K. Bhunia and J. Majumda, “Elitist Genetic Algorithm for Assignment Problem with Imprecise Goal,” European Journal of Operational Research, Vol. 177, No. 2, 2007, pp. 684-692. doi:10.1016/j.ejor.2005.11.034

[20] K. M. Miettinem, “Nonlinear Multiobjective Optimization,” Kluwer Academic Publishers, Massachusetts, 1999.

[21] B. C. Eaves and W. I. Zangwill, “Generalized Cutting Plane Algorithms,” SIAM Journal on Control, Vol. 9, No. 4, 1971, pp. 529-542. doi:10.1137/0309037

[22] M. K. Luhandjula, “On Fuzzy Random-Valued Optimization,” American Journal of Operations Research, Vol. 1, No. 4, 2011, pp. 259-267. doi:10.4236/ajor.2011.14030

[23] C. P. Olivier, “Solving Bilevel Linear Multiobjective Programming Problems,” American Journal of Operations Research, Vol. 1, No. 4, 2011, pp. 214-219.