WJCMP  Vol.2 No.4 , November 2012
Domain Suppression in the Negative Differential Conductivity Region of Carbon Nanotubes by Applied AC Electric Field
Abstract: We study theoretically the electron transport properties in achiral carbon nanotubes under the influence of an external electric field E(t) using Boltzmann’s transport equation to derive the current-density. A negative differential conductivity (NDC) is predicted in quasi-static approximation i.e., ωτ << 1, similar to that observed in superlattice. However, a strong enhancement in the current density intensity is observed in NDC of the achiral carbon nanotubes. This is observed at where the constant electric field E0 is equal to the amplitude of the AC electric field E1. The peak of the NDC intensity occurs at very weaker fields than that of superlattice under the same conditions. The peak intensity decreases and shifts to right with the increase in the amplitude of the ac field. This mechanism suppresses the domain formation and therefore could be used in terahertz frequency generation.
Cite this paper: S. Abukari, S. Mensah, K. Adu, N. Mensah, K. Dompreh, A. Twum, C. Amuah, M. Amekpewu and M. Rabiu, "Domain Suppression in the Negative Differential Conductivity Region of Carbon Nanotubes by Applied AC Electric Field," World Journal of Condensed Matter Physics, Vol. 2 No. 4, 2012, pp. 274-277. doi: 10.4236/wjcmp.2012.24045.

[1]   S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature (London), Vol. 354, 1991, pp. 56-58. doi:10.1038/354056a0

[2]   A. S. Maksimenko and G. Ya. Slepyan, “Negative Differential Conductivity in Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 2, 2000, pp. 362-365. doi:10.1103/PhysRevLett.84.362

[3]   S. Y. Mensah, “The Negative Differential Effect in a Semiconductor Superlattice in the Presence of an External Electric Field,” Journal of Physics: Condensed Matter, Vol. 4, No. 22, 1992, pp. L325-329. doi:10.1088/0953-8984/4/22/001

[4]   F. Klappenberger, K. N. Alekseev, K. F. Renk, R. Scheurer, E. Schomburg, S. J. Allen, G. R. Ramian, J. S. S. Scott, A. Kovsh, V. Ustinov and A. Zhokov, “Ultrafast Creation and Annihilation of Space-Charge Domains in a Semiconductor Superlattice Observed by Use of Terahertz Fields,” The European Physical Journal B, Vol. 39, No. 4, 2004, pp. 483-489. doi:10.1140/epjb/e2004-00221-y

[5]   C. Kane, L. Balents and M. P. A. Fisher, “Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes,” Physical Review Letters, Vol. 79, No. 25, 1997, pp. 5086- 5089. doi:10.1103/PhysRevLett.79.5086

[6]   M. F. Lin and K. W. K. Shung, “Magnetization of Graphene Tubules,” Physical Review B, Vol. 52, No. 11, 1995, pp. 8423-8438. doi:10.1103/PhysRevB.52.8423

[7]   C. L. Kane, E. J. Mele, R. S. Lee, J. E. Fischer, P. Petit, H. Dai, A. Thess, R. Smalley, E. A. R. M. Verscheueren, S. J. Tans and C. Dekker, “Temperature-Dependent Resistivity of Single-Wall Carbon Nanotubes,” Europhysics Letters, Vol. 41, No. 6, 1998, pp. 683-688. doi:10.1209/epl/i1998-00214-6

[8]   R. A. Jishi, M. S. Dresselhaus and G. Dresselhaus, “Electron-Phonon Coupling and the Electrical Conductivity of Fullerene Nanotubules,” Physical Review B, Vol. 48, No. 15, 1993, pp. 11385-11389. doi:10.1103/PhysRevB.48.11385

[9]   F. G. Bass and A. A. Bulgakov, “Kinetic and Electrodynamic Phenomena in Classical and Quantum Semiconductor Superlattices,” Nova Science, New York, 1997.

[10]   O. M. Yevtushenko, G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia and D. A. Romanov, Physical Review Letters, Vol. 79, 1997, p. 1102.

[11]   G. Ya. Slepyan, S. A. Maksimenko, V. P. Kalosha, J. Herrmann, E. E. B. Campbell and I. V. Hertel, “Highly Efficient High-Order Harmonic Generation by Metallic Carbon Nanotubes,” Physical Review A, Vol. 60, No. 2, 1999, pp. 777-780. doi:10.1103/PhysRevA.60.R777