JBPC  Vol.3 No.4 , November 2012
Surface tensometry studies on formulations of surfactants with preservatives as a tool for antimicrobial drug protection characterization
Abstract: The aim of the work was to quantify possible interactions between surfactants and preservatives, comparing surface properties, in model pharmaceutical formulations. Surface parameters of 2-component surfactant-preservative aquous mixtures were determined with a Wilhelmy plate technique, for the so-called principal surfactants (polysorbate 80, egg lecithin, phosphatidylcholine) and preservatives, which were methylparaben and benzalkonium chloride (BA-C). A generalized surface tension vs. surfactant concentration plot signatures, in the presence of preservative at a fixed amount, allowed: the critical micellar concentration (cmc) shift, additive molecules partition from the surface to the bulk, mixed micelles formation concentration, and additive surface removal concentration to be determined in reference to surface activity of the added substance. Methylparaben is a compound of lower (in comparison to BAC) surface activity, lower partitioning coefficient possessing lower energy and concentration of its removal from the surface, that makes it play effectively an antimicrobial protection role in the bulk of pharmaceutical products, as already shown by chemical tests.
Cite this paper: Pogorzelski, S. , Watrobska-Swietlikowska, D. and Sznitowska, M. (2012) Surface tensometry studies on formulations of surfactants with preservatives as a tool for antimicrobial drug protection characterization. Journal of Biophysical Chemistry, 3, 324-333. doi: 10.4236/jbpc.2012.34040.

[1]   Sznitowska, M., Janicki, S., Dabrowska, E. and Gajewska, M. (2002) Screening of antimicrobial agents as potential preservatives for submicron emulsions. European Journal of Pharmaceutical Science, 15, 489-495. doi:10.1016/S0928-0987(02)00034-9

[2]   Turro, N.J., Kuo, P-L., Somasundaran, P. and Wong, K. (1986) Surface and bulk interactions of ionic and nonionic surfactants. Journal of Physical Chemistry, 90, 288-291. doi:10.1021/j100274a017

[3]   Watrobska-Swietlikowska, D. and Sznitowska, M. (2006) Partitioning of parabens between phases of submicron emulsions stabilized with egg lecithin. International Journal of Pharmacy, 312, 174-178. doi:10.1016/j.ijpharm.2006.01.005

[4]   Adamson, A.W. and Gast, A.P. (1997) Physical Chemistry of Surfaces, 6th ed. John Wiley and Sons, New York. doi:10.1149/1.2133374

[5]   Schwarz, G., Wackenbauer, G. and Taylor, S.E. (1996) Partitioning of a nearly insoluble lipid monolayer into its aqueous subphase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 111, 4341-4346. doi:10.1016/0927-7757(95)03495-1

[6]   Gaines, G.L. (1966) Insoluble Monolayers at the Liquid/Gas Interface, Wiley, New York.

[7]   Sanchez-Gonzales, J., Cabrerizo-Vilchez, M.A. and Galvez-Ruiz, M.J. (1999) Evaluation of the interactions between lipids and γ-globulin protein at the air-liquid interface. Colloids and Surfaces B: Biointerfaces, 12, 123-138. doi:10.1016/S0927-7765(98)00069-1

[8]   Nguyen, C.M., Rathman, J.F. and Scamehorn, J.F. (1986) Thermodynamics of mixed micelle formation. Journal of Colloid and Interface Science, 112, 438-446. doi:10.1016/0021-9797(86)90112-8

[9]   Dharmawardana, U.R., Christian, S.D., Tucker, E.E., Taylor, R.W. and Scamehorn, J.F. (1993) A surface tension method for determining binding constants for cyclodextrin inclusion complexes of ionic surfactants. Langmuir, 9, 2258-2263. doi:10.1021/la00033a003

[10]   Sznitowska, M., Klunder, M. and Placzek, M. (2008) Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin. Chemical and Pharmaceutical Bulletin, 56, 70-74. doi:10.1248/cpb.56.70

[11]   Polozova, A.I., Dubachev, G.E., Simonova, T.N. and Barsukov, L. (1995) Temperature-induced micellar-lamellar transformation in binary mixtures of saturated phosphatidylcholines with sodium cholate. FEBS Letters, 358, 17-22. doi:10.1016/0014-5793(94)01378-E

[12]   Stoye, I., Schr?der, K. and Müller-Goymann, C. (1998) Transformation of a liposomal dispersion containing ibuprofen lysinate and phospholipids into mixed micelles—physicochemical characterization and influence on drug permeation through excised human stratum corneum. European Journal of Pharmacy and Biopharmacy, 46, 191-200. doi:10.1016/S0939-6411(98)00023-X

[13]   Westesen, K. and Wehler, T. (1992) Physicochemical characterization of a model intravenous oil-in-water emulsion. Journal of Pharmaceutical Science, 81, 777-786. doi:10.1002/jps.2600810812

[14]   Herman, C.J. and Groves, M.J. (1993) The influence of free fatty acid formation on the pH of phospholipid-stabilized triglyceride emulsions. Pharmaceutical Research, 10, 774-775. doi:10.1023/A:1018932421357

[15]   Al-Maaieh, A. and Aburub, A. (2007) Surface activity of non-micelle forming compound containing a surface-active impurity. International Journal of Pharmacy, 334, 125-128. doi:10.1016/j.ijpharm.2006.10.034

[16]   Mukerjee, P.J. (1974) Micellar properties of drugs: micellar and nonmicellar patterns of self-association of hydrophobic solutes of different molecular structures-monomer fraction, availability, and misuses of micellar hypothesis. Journal of Pharmaceutical Science, 63, 972-981. doi:10.1002/jps.2600630647

[17]   King, S.Y., Basista, A.M. and Torosian, G. (1989) Self- association and solubility behaviors of a novel anticancer agent, Brequinar Sodium. Journal of Pharmaceutical Science, 78, 95-100. doi:10.1002/jps.2600780204

[18]   Hinze, W.L. (1987) Organized surfactant assemblies in separation science. In: Hinze, W.L. and Armstrong, D.W., Eds., Ordered Media in Chemical Separations, ACS Symposium Series No. 342, American Chemical Society, Chapter 1, 2-82. doi:10.1021/bk-1987-0342.ch001

[19]   Zakharova, T.S., Fortinskaya, E.S., Kochetova, M.M., Torkhovskaya, T.I. and Khalilov, E.M. (2000) Comparison of distribution characteristics of phosphatidylcholines and surfactant preparation. Biophysics and Biochemistry, 129, 411-413. doi:10.1007/BF02439265

[20]   Tajima, K. and Gershfeld, N.L. (1978) Equilibrium studies of lecithin-cholesterol interactions. II. Phase relations in surface films: Analysis of the “condensing” effect of cholesterol. Biophysical Journal, 22, 489-500. doi:10.1016/S0006-3495(78)85501-5

[21]   Krickau, D.P., Mueller, R.H. and Thomsen, J. (2007) Degradation kinetics of hydrolytically susceptible drugs in O/W emulsions—Effects of interfacial area and lecithin. International Journal of Pharmacy, 342, 62-71. doi:10.1016/j.ijpharm.2007.04.033

[22]   Kjelleberg, S. and Stenstrom, T.A. (1980) Lipid surface films: Interaction of bacteria with free fatty acids and phospholipids at the air/water interface. Journal of General Microbiology, 116, 417-423. doi:10.1099/00221287-116-2-417

[23]   Vaknin, D., Kjaer, K., Als-Nielsen, J. and L?sche, M. (1991) Structural properties of phosphatidylcholine in a monolayer at the air/water interface. Biophysical Journal, 59, 1325-1332. doi:10.1016/S0006-3495(91)82347-5

[24]   Yalkowsky, S.H. (1999) Solubility and Solubilization in Aqueous Media. Oxford University Press, Oxford.

[25]   Dragcevic, D., Bujan, M., Grahek, Z. and Filipovic-Vincekovic, N. (1995) Adsorption at the air/water interface in dodecylammonium chloride/sodium dodecyl sulfate mixtures. Colloid and Polymer Science, 273, 967-973. doi:10.1007/BF00660375

[26]   Filipovic-Vincekovic, N., Bujan, M., Dragcevic, D. and Nekic, N. (1995) Phase behavior in mixtures of cationic and anionic surfactants in aqueous solution. Colloid and Polymer Science, 273, 182-188. doi:10.1007/BF00654016

[27]   Han, J. and Washington, C. (2005) Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability. International Journal of Pharmacy, 288, 263-271. doi:10.1016/j.ijpharm.2004.10.002

[28]   Galvez-Ruiz, M.J. and Cabrerizo-Vilchez, M.A. (1992) Mixed monolayers of lecithin and bile acids at the air-aqueous solution interface. In: Stroeve, P. and Blalazs, A.C., Eds., Macromolecular Assemblies in Polymeric Systems, ACS Symposium Series No. 493, American Chemical Society, Chapter 13, 135-152. doi:10.1021/bk-1992-0493.ch013