IJG  Vol.3 No.5 , November 2012
Remote Sensing, Model-Derived and Ground Measurements of Snow Water Equivalent and Snow Density in Alaska
Abstract: Snow water equivalent (SWE) is important for investigations of annual to decadal-scale changes in Arctic environment and energy-water cycles. Passive microwave satellite-based retrieval algorithm estimates of SWE now span more than three decades. SWE retrievals by the Advanced Microwave Scanning Radiometer for the Earth Observation System (AMSR-E) onboard the NASA-Aqua satellite ended at October 2011. A critical parameter in the AMSR-E retrieval algorithm is snow density assumed from surveys in Canada and Russia from 1940s-1990s. We compare ground SWE measurements in Alaska to those of AMSR-E, European Space Agency GlobSnow, and GIPL model. AMSR-E SWE underperforms (is less than on average) ground SWE measurements in Alaska through 2011. Snow density measurements along the Alaska permafrost transect in April 2009 and 2010 show a significant latitude-gradient in snow density increasing to the Arctic coast at Prudhoe Bay. Large differences are apparent in comparisons of our measured mean snow densities on a same snow cover class basis March-April 2009-2011 Alaska to those measured in Alaska winter 1989-1992 and Canadian March-April 1961-1990. Snow density like other properties of snow is an indicator of climate and a non-stationary variable of SWE.
Cite this paper: R. Muskett, "Remote Sensing, Model-Derived and Ground Measurements of Snow Water Equivalent and Snow Density in Alaska," International Journal of Geosciences, Vol. 3 No. 5, 2012, pp. 1127-1136. doi: 10.4236/ijg.2012.35114.

[1]   M. Sturm and C. Benson, “Scales of Spatial Heterogeneity for Perennial and Seasonal Snow Layers,” Annals of Glaciology, Vol. 38, No. 1, 204, pp. 253-260. doi:10.3189/172756404781815112

[2]   W. S. B. Paterson, “The Physics of Glaciers,” 3rd Edition, Butterworth-Heinemann, Boston, 2001.

[3]   V. F. Petrenko and R.W. Whitwort, “The Physics of Ice,” Oxford University Press, New York, 2003.

[4]   H. Bader, “Sorge’s Law of Densification of Snow on High Polar Glaciers,” Journal of Glaciology, Vol. 2, No. 15, 1954, pp. 319-323.

[5]   M. Tedesco, R. E. J. Kelly, J. L. Foster and A. T. C. Chang, “AMSR-E/Aqua Daily L3 Global Snow Water Equivalent EASE-Grids V009 & V010,” National Snow and Ice Data Center, Boulder, 2004.


[7]   R. E. Kelly, A. T. Chang, L. Tsang and J. L. Foster, “A Prototype AMSR-E Global Snow Area and Snow Depth Algorithm,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 2, 2003, pp. 230-242. doi:10.1109/TGRS.2003.809118

[8]   M. Tedesco and P. S. Narvekar, “Assessment of the NASA AMSR-E SWE Product,” IEEE Journal of Satellite Technology Applicaitons Earth Observation and Remote Sensing, Vol. 3, No. 1, 2010, pp. 141-159. doi:10.1109/JSTARS.2010.2040462


[10]   J. Pulliainen, “Mapping of Snow Water Equivalent and Snow Depth in Boreal and Sub-Arctic Zones by Assimilating Space-Borne Microwave Radiometer Data and Ground-Based Observations,” Remote Sensing of Environment, Vol. 101, 2006, pp. 257-269. doi:10.1016/j.rse.2006.01.002

[11]   J. Pulliainen, J. Grandell and M. Hallikainen, “HUT Snow Emission Model and Its Applicability to Snow Water Equivalent Retrieval,” IEEE Transactions Geoscience and Remote Sensing, Vol. 37, No. 3, 1999, pp. 1378-1390. doi:10.1109/36.763302

[12]   D. Riseborough, N. Shiklomanov, B. Etzelmuller, S. Gruber and S. Marchenko, “Recent Advances in Permafrost Modeling,” Permafrost and Periglacial Processes, Vol. 19, No. 2, 2008, pp. 137-156. doi:10.1002/ppp.615

[13]   E. E. Jafarov, S. S. Marchenko and V. E. Romanovsky, “Numerical Modeling of Permafrost Dynamics in Alaska Using a High Spatial Resolution Dataset,” The Cryosphere, Vol. 6, No. 3, 2012, pp. 613-624. doi:10.5194/tc-6-613-2012

[14]   D. L. Verseghy, “Class-A Canadian Land Surface Scheme for GCMS, I. Soil Model,” International Journal of Climatology, Vol. 11, No. 2, 1991, pp. 111-133. doi:10.1002/joc.3370110202

[15]   J. E. Walsh, W. L. Chapman, V. Romanovsky, J. H. Christensen and M. Stendel, “Global Climate Model Performance over Alaska and Greenland,” Journal of Climate, Vol. 21, No. 23, 2008, pp. 6156-6174. doi:10.1175/2008JCLI2163.1

[16]   D. K. Atwood, R. M. Guritz, R. R. Muskett, C. S. Lingle, J. M. Sauber and J. T. Freymueller, “DEM Control in Arctic Alaska with ICES at Laser Altimetry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 2007, pp. 3710-3720. doi:10.1109/TGRS.2007.904335

[17]   M. Sturm, J. A. Maslanik, D. K. Perovich, J. C. Stroeve, J. Richter-Menge and T. Markus, “Snow Depth and Ice Thickness Measurements from the Beaufort and Chukchi Seas Collected during the AMSR-Ice03 Campaign,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 11, 2006, pp. 3009-3020. doi:10.1109/TGRS.2006.878236





[22]   R. G. Stanley, T. S. Ahlbrandt, R. R. Charpentier, T. A. Cook, J. M. Crews, T. R. Klett, P. G. Lillis, R. L. Morin, J. D. Phillips, R. M. Pollastro, E. L. Rowan, R. W. Saltus, C. J. Schenk, M. K. Simpson, A. B. Till and S. M. Troutman, “Oil and Gas Assessment of Yukon Flats, EastCentral Alaska, 2004,” USGS Fact-Sheet No. 2004-3121, USGS, Deptartment of Interior, Washington, 2004.


[24]   National Water and Climate Center, “SNOTEL and Snow Survey Water Supply Forecasting,” US Department of Agriculture, Washington, 2009.

[25]   J. B. Johnson, A. Gelvin and G. L. Schaefer, “An Engineering Design Study of Electronic Snow Water Equivalent Sensor Performance,” Western Snow Conference Proceedings 75th Annual Meeting, Kailua-Kona, 16-19 April 2007, pp. 23-30.

[26]   M. Sturm, J. Holmgren and G. E. Liston, “A Seasonal Snow Cover Classification System for Local and Global Applications,” Journal of Climate, Vol. 8, No. 5, 1995, pp. 1261-1283. doi:10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2

[27]   T. E. Osterkamp and V. E. Romanovsky, “Evidence for Warming and Thawing of Discontinuous Permafrost in Alaska,” Permafrost And Periglacial Processes, Vol. 10, No. 1, 1999, pp. 17-37. doi:10.1002/(SICI)1099-1530(199901/03)10:1<17::AID-PPP303>3.0.CO;2-4

[28]   J. Dong, J. P. Walker and P. R. Houser, “Factors Affecting Remotely Sensed Snow Water Equivalent Uncertainty,” Remote Sensing of Environment, Vol. 97, No. 1, 2005, pp. 68-82. doi:10.1016/j.rse.2005.04.010

[29]   R. D. Brown and R. O. Braaten, “Spatial and Temporal Variability of Canadian Monthly Snow Depths, 19461995,” Atmosphere-Ocean, Vol. 36, No. 1, 1998, pp. 3754. doi:10.1080/07055900.1998.9649605

[30]   R. D. Brown and P. W. Mote, “The Response of Northern Hemisphere Snow Cover to a Changing Climate,” Journal of Climate, Vol. 22, No. 8, 2009, pp. 2124-2145. doi:10.1175/2008JCLI2665.1

[31]   M. Sturm and C. Benson, “Scales of Spatial Heterogeneity for Perennial and Seasonal Snow Layers,” Annals of Glaciology, Vol. 38, No. 1, 2004, pp. 253-260. doi:10.3189/172756404781815112

[32]   T. A. Douglas and M. Sturm, “Arctic Haze, Mercury and the Chemical Composition of Snow across Northwestern Alaska,” Atmosphere Environment, Vol. 38, No. 6, 2004, pp. 805-820. doi:10.1016/j.atmosenv.2003.10.042

[33]   M. Sturm, “Snow Distribution and Heat Flow in Taiga,” Arctic and Alpine Research, Vol. 24, No. 2, 1992, pp. 145-152. doi:10.2307/1551534

[34]   C. Benson and M. Sturm, “Structure and Wind Transport of Seasonal Snow on the Arctic Slope of Alaska,” Annals of Glaciology, Vol. 18, 1993, pp. 261-267.

[35]   J. P. McFadden, G. E. Liston, M. Sturm, R. A. Peilke Sr., and F. S. Chapin III., “Interaction of Shrubs and Snow in Arctic Tundra: Measurement and Models,” Proceedings of a Symposium Held during the Sixth IAHS Scientific Assembly, Maastricht, 18-27 July 2001, pp. 317-325.

[36]   R. R. Muskett, “Multi-Satellite and Sensor Derived Trends and Variation of Snow Water Equivalent on the HighLatitudes of the Northern Hemisphere,” International Journal of Geosciences, Vol. 3, No. 1, 2012, pp. 1-13. doi:10.4236/ijg.2012.31001