Linear Inferential Modeling: Theoretical Perspectives, Extensions, and Comparative Analysis

Show more

References

[1] J. V. Kresta, T. E. Marlin and J. F. McGregor, “Development of Inferential Process Models Using PLS,” Computers & Chemical Engineering, Vol. 18, No. 7, 1994, pp. 597-611. doi:10.1016/0098-1354(93)E0006-U

[2] R. Weber and C. B. Brosilow, “The Use of Secondary Measurement to Improve Control,” AIChE Journal, Vol. 18, No. 3, 1972, pp. 614-623. doi:10.1002/aic.690180323

[3] B. Joseph and C. B. Brosilow, “Inferential Control Processes,” AIChE Journal, Vol. 24, No. 3, 1978, pp. 485-509.
doi:10.1002/aic.690240313

[4] M. Morari and G. Stephanopoulos, “Optimal Selection of Secondary Measurements within the Framework of State Estimationin the Presence of Persistent Unknown Disturbances,” AIChE Journal, Vol. 26, No. 2, 1980, pp. 247-259. doi:10.1002/aic.690260207

[5] I. Frank and J. Friedman, “A Statistical View of Some Chemometric Regression Tools,” Technometrics, Vol. 35, No. 2, 1993, pp. 109-148.
doi:10.1080/00401706.1993.10485033

[6] A. Hoerl and R. Kennard, “Ridge Regression Based Estimation for Nonorthogonal Problems,” Technometrics, Vol. 8, 1970, pp. 27-52.

[7] J. McGregor, T. Kourti and J. Kresta, “Multivariate Identification: A Study of Several Methods,” IFAC ADCHEM Proceedings, Toulouse, Vol. 4, 1991, pp. 145-156.

[8] M. N. Nounou, “Dealing with Collinearity in Fir Models Using Bayesian Shrinkage,” Industrial and Engineering Chemistry Research, Vol. 45, 2006, pp. 292-298.
doi:10.1021/ie048897m

[9] B. R. Kowalski and M. B. Seasholtz, “Recent Developments in Multivariate Calibration,” Journal of Chemometrics, Vol. 5, 1991, pp. 129-145.
doi:10.1002/cem.1180050303

[10] M. Stone and R. J. Brooks, “Continuum Regression: Cross-Validated Sequentially Constructed Prediction Embracing Ordinaryleast Squares, Partial Least Squares and Principal Components Regression,” Journal of the Royal Statistical Society B, Vol. 52, No. 2, 1990, pp. 237-269.

[11] S. Wold, “Soft Modeling: The Basic Design and Some Extensions, Systems under Indirect Observations,” Elsevier, Amsterdam, 1982.

[12] E. Malthouse, A. Tamhane and R. Mah, “Non-Linear Partial Least Squares,” Computers and Chemical Engineering, Vol. 21, 1997, pp. 875-890.
doi:10.1016/S0098-1354(96)00311-0

[13] H. Hotelling, “Relations between Two Sets of Variables,” Biometrika, Vol. 28, 1936, pp. 321-377.

[14] F. R. Bach and M. I. Jordan, “Kernel Independent Component Analysis,” Journal of Machine Learning Research, Vol. 3, No. 1, 2002, pp. 1-48.

[15] S. S. D. R. Hardoon and J. Shawetaylor, “Canonical Correlation Analysis: An Overview with Application to Learning Methods,” Neural Computation, Vol. 16, No. 12, 2004, pp. 2639-2664. doi:10.1162/0899766042321814

[16] M. Borga, T. Landelius and H. Knutsson, “A Unified Approach to PCA, PLS, MLR and CCA, Technical Report,” Technical Report, Linkoping University, 1997.

[17] T. Mejdell and S. Skogestad, “Estimation of Distillation Compositions from Multiple Temperature Measurements Using Partial Least Squares Regression,” Industrial & Engineering Chemistry Research, Vol. 30, 1991, pp. 2543-2555. doi:10.1021/ie00060a007

[18] M. kano, K. Miyazaki, S. Hasebe and I. Hashimoto, “Inferential Control System of distillation Compositions Using Dynamicpartial Least Squares Regression,” Journal of Process Control, Vol. 10, No. 2, 2000, pp. 157-166.
doi:10.1016/S0959-1524(99)00027-X

[19] T. Mejdell and S. Skogestad, “Composition Estimator in a Pilot-Plant Distillation Column,” Industrial & Engineering Chemistry Research, Vol. 30, 1991, pp. 2555-2564.
doi:10.1021/ie00060a008

[20] Y. Hiroyuki, Y. B. Hideki, F. C. E. O. Hiromu and F. Hideki, “Canonical Correlation Analysis for Multivariate Regression and Its Application to Metabolic Fingerprinting,” Biochemical Engineering Journal, Vol. 40, No. 2, 2008, pp. 199-204.

[21] R. Rosipal and N. Kramer, “Overview and Recent Advances in Partial Least Squares. Subspace, Latent Structure and Feature Selection Techniques,” Lecture Notes in Computer Science, Vol. 3940, 2006, pp. 34-51.
doi:10.1007/11752790_2

[22] P. Geladi and B. R. Kowalski, “Partial Least Square Regression: A Tutorial,” Analytica Chimica Acta, Vol. 185, No. 1, 1986, pp. 1-17.
doi:10.1016/0003-2670(86)80028-9

[23] S. Wold, “Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models,” Technometrics, Vol. 20, No. 4, 1978, p. 397.
doi:10.1080/00401706.1978.10489693

[24] O. Yeniay and A. Goktas, “A Comparison of Partial Least Squares Regression with Other Prediction Methods,” Hacettepe Journal of Mathematics and Statistics, Vol. 31, 2002, pp. 99-111.

[25] P. D. Wentzell and L. V. Montoto, “Comparison of Principal Components Regression and Partial Least Square Regression through Generic Simulations of Complex Mixtures,” Chemometrics and Intelligent Laboratory Systems, Vol. 65, 2003, pp. 257-279.
doi:10.1016/S0169-7439(02)00138-7