ICA  Vol.3 No.4 , November 2012
Stabilization of Unknown Nonlinear Discrete-Time Delay Systems Based on Neural Network
ABSTRACT
This paper discusses about the stabilization of unknown nonlinear discrete-time fixed state delay systems. The unknown system nonlinearity is approximated by Chebyshev neural network (CNN), and weight update law is presented for approximating the system nonlinearity. Using appropriate Lyapunov-Krasovskii functional the stability of the nonlinear system is ensured by the solution of linear matrix inequalities. Finally, a relevant example is given to illustrate the effectiveness of the proposed control scheme.

Cite this paper
V. Deolia, S. Purwar and T. Sharma, "Stabilization of Unknown Nonlinear Discrete-Time Delay Systems Based on Neural Network," Intelligent Control and Automation, Vol. 3 No. 4, 2012, pp. 337-345. doi: 10.4236/ica.2012.34039.
References
[1]   M. Basin, J. Perez and R. Martinenz-Zuniga, “Optimal Filtering for Nonlinear Polynomial Systems over Linear Observations with Delay,” International Journal of Innovative Computing Information and Control, Vol. 2, 2006, pp. 863-874.

[2]   J. Chen, D. M. Xu and B. Shafai, “On Sufficient Conditions for Stability Independent of Delay,” IEEE Transactions on Automatic Control, Vol. 40, No. 9, 1995, pp. 1675-1680. doi:10.1109/9.412644

[3]   E. Fridman and U. Shaked, “Stability and Guaranteed Cost Control of Uncertain Discrete-Delay Systems,” International Journal of Control, Vol. 78, No. 4, 2005, pp. 235-246. doi:10.1080/00207170500041472

[4]   C. Lin, Q.-G. Wang and T. H. Lee, “A Less Conservative Robust Stability Test for Linear Uncertain Time-Delay Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 1, 2006, pp. 87-91. doi:10.1109/TAC.2005.861720

[5]   Z. Wang, B. Huang and H. Unbehauen, “Robust Hx Observer Design of Linear State Delayed Systems with Parameteric Uncertainty: The Discrete-Time Case,” Automatica, Vol. 35, 1999, pp. 1161-1167 doi:10.1016/S0005-1098(99)00008-4

[6]   Y. He, Q. G. Wang, C. Lin and M. Wu, “Delay-RangeDependent Stability for Systems with Time Varying Delay,” Automatica, Vol. 43, No. 2, 2007, pp. 371-376. doi:10.1016/j.automatica.2006.08.015

[7]   X. Li and C. de Sauza, “Criteria for Robust Stability and Stabilization of Uncertain Linear Systems with State Delay,” Automatica, Vol. 33, 1997, pp. 1697-1662. doi:10.1016/S0005-1098(97)00082-4

[8]   V. Kolmanvoskii and J.-P. Richard, “Stability of Some Linear Systems with Delays,” IEEE Transactions on Automatic Control, Vol. 44, 1999, pp. 984-989. doi:10.1109/9.763213

[9]   E. Fridman, “New Lyapunov-Krasovskii Functional for Stability of Linear Retarted and Neutral Type Systems,” Systems and Control Letters, Vol. 43, 2001, pp. 309-319. doi:10.1016/S0167-6911(01)00114-1

[10]   S.-I. Niculescu, “Delay Effects on Stability: A Robust Control Approach,” Lecture Notes in Control and Information Sciences, Vol. 269, Springer-Verlag, London, 2001.

[11]   E. Fridman and U. Shaked, “An Improved Stabilization Method for Linear Systems with Time-Delay,” IEEE Transactions on Automation Control, Vol. 47, 2002, pp. 1931-1937. doi:10.1109/TAC.2002.804462

[12]   E. Fridman, “Stability of Linear Functional Differential Equations: A New Lyapunov Technique,” Proceedings of Mathematical Theory of Networks and Systems, Leuven, 5-9 July 2004.

[13]   K. J. Astrom and B. Wittenmark, “Computer Controlled Systems: Theory and Design,” Prentice-Hall Inc., Englewood Cliffs, 1984.

[14]   E. Fridman and U. Shaked, “An LMI Approach to Stability of Discrete Delay Systems,” Proceedings of 7th IEE European Control Conference, Cambridge, 2003.

[15]   Y. S. Lee and W. H. Kwon, “Delay Dependent Robust Stabilization of Uncertain Discrete-Time State-Delayed Systems,” 15th Triennial World Congress, Barcelona, 2002.

[16]   S. S. Ge, F. Hong and T. H. Lee, “Adaptive Neural Network Control of Nonlinear Systems with Unknown Time Delays,” IEEE Transactions on Automatic Control, Vol. 48, No. 11, 2003, pp. 2004-2010. doi:10.1109/TAC.2003.819287

[17]   S. S. Ge, F. Hong and T. H. Lee, “Adaptive Neural Control of Nonlinear Time-Delay Systems with Unknown Virtual Control Coefficients,” IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 1, 2004, pp. 499-516. doi:10.1109/TSMCB.2003.817055

[18]   D. W. C. Ho, J. Li and Y. Niu, “Adaptive Neural Control for a Class of Nonlinearly Parametric Time-Delay Systems,” IEEE Transactions on Neural Networks, Vol. 16, No. 3, 2005, pp. 625-635. doi:10.1109/TNN.2005.844907

[19]   A. Kulkarni and S. Purwar, “Backstepping Control for a Class of Delayed Nonlinear Systems with Input Constraints,” IEEE Conference, Vol. 1, 2008, pp. 274-279.

[20]   B. Chen, X. P. Liu, K. F. Liu and C. Lin, “Fuzzy-Approximation-Based Adaptive Control of Strict-Feedback Nonlinear Systems with Time Delays,” IEEE Transactions on Fuzzy Systems, Vol. 18, No. 5, 2010, pp. 883-891. doi:10.1109/TFUZZ.2010.2050892

[21]   W. Aggoune, R. Kharel and K. Busawon, “On Feedback Stabilization of Nonlinear Discrete-Time State-Delayed Systems,” ECC Conference, 23-26 August 2009, Budapest.

[22]   H. J. Gao and T. W. Chen, “New Results on Stability of Discrete-Time Systems with Time-Varying State Delay,” IEEE Transactions on Automatic Control, Vol. 52, No. 2, 2007, pp. 328-334. doi:10.1109/TAC.2006.890320

[23]   S. Ibrir, W. F. Xie and C.-Y. Su, “Observer Design for Discrete-Time Systems Subject to Time Delay Nonlinearities,” International Journal of Systems Science, Vol. 37, No. 9, 2006, pp. 629-641. doi:10.1080/00207720600774289

[24]   Q.-L. Wei, H.-G. Zhang, D.-R. Liu and Y. Zhao, “An Optimal Control Scheme for a Class of Discrete-Time Nonlinear Systems with t Delays Using Adaptive Dynamic Programming,” ACTA Automatica Sinica, Vol. 36, No. 1, 2010, pp. 121-129. doi:10.3724/SP.J.1004.2010.00121

[25]   K. E. Bouazza, M. Boutayeb and M. Darouach, “State Feedback Stabilization of Discrete-Time Delay Nonlinear Systems,” Proceedings of Mathematical Theory of Networks and Systems, Leuven, 5-9 July 2004.

[26]   E. J. Hartman, J. D. Keelar and J. M. Kowalski, “Layered Neural Networks with Gaussian Hidden Units as Universal Approximation,” Neural Computation, Vol. 2, 1990, pp. 210-215. doi:10.1162/neco.1990.2.2.210

[27]   S. Chen, S. A. Billings and P. M. Grant, “Recursive Hybrid Algorithm for Nonlinear System Identification Using Radial Basis Function Networks,” International Journal of Control, Vol. 55, No. 5, 1992, pp. 1051-1070. doi:10.1080/00207179208934272

[28]   S. V. T. Elanayar and Y. C. Shin, “Radial Basis Function Neural Network for Approximation and Estimation of Nonlinear Stochastic Dynamic Systems,” IEEE Transactions on Neural Networks, Vol. 5, 1994, pp. 594-603. doi:10.1109/72.298229

[29]   J. C. Patra and A. C. Kot, “Nonlinear Dynamic System Identification Using Chebyshev Functional Link Artificial Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 32, No. 4, 2002, pp. 505-511. doi:10.1109/TSMCB.2002.1018769

[30]   A. Namatame and N. Ueda, “Pattern Classification with Chebyshev Neural Network,” International Journal Neural Network, Vol. 3, 1992, pp. 23-31.

[31]   T. T. Lee and J. T. Jeng, “The Chebyshev Polynomial Based Unified Model Neural Networks for Functions Approximations,” IEEE Transactions on Systems, Man & Cybernetics, Part B, Vol. 28, No. 6, 1998, pp. 925-935.

[32]   S. Purwar, I. N. Kar and A. N. Jha, “Adaptive Output Feedback Tracking Control of Robot Manipulators Using Position Measurements Only,” Expert Systems with Applications, Vol. 34, 2008, pp. 2789-2798. doi:10.1016/j.eswa.2007.05.030

[33]   S. Purwar, I. N. Kar and A. N. Jha, “On-Line System Identification of Complex Systems Using Chebyshev Neural Networks,” Applied Soft Computing, Vol. 7, No. 1, 2005, pp. 364-372. doi:10.1016/j.asoc.2005.08.001

[34]   C. Kwan and F. L. Lewis, “Robust Backstepping Control of Nonlinear Systems Using Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 30, No. 6, 2000, pp. 753-766. doi:10.1109/3468.895898

 
 
Top