[1] L. C. Gardner, “The Quantum Hydrodynamic Model for Semiconductor Devices,” SIAM Journal on Applied Mathematics, Vol. 54, No. 2, 1994, pp. 409-427. doi:10.1137/S0036139992240425
[2] F. Haas “A Magnetohydrodynamic Model for Quantum Plasmas,” Physics of Plasmas, Vol. 12, No. 6, 2005, Article ID: 062117, p 9. doi:10.1063/1.1939947
[3] L. Rayleigh, “Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density,” Proceedings London Mathematical Society, Vol. 14, No. 1, 1882, pp. 170-177. doi:10.1112/plms/s1-14.1.170
[4] G. I. Taylor, “The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to Their Planes,” Proceedings of the Royal Society of London. Series A, vol. 201, No. 1065, 1950, pp. 192-196. doi:10.1098/rspa.1950.0052
[5] k. Bhimsen Shivamoggi, “Rayleigh-Taylor Instability of Compressible Plasma in a Vertical Magnetic Field,” Astrophysics and Space Science, vol. 79, No. 1, 1981, pp. 3-9. doi:10.1007/BF00655900
[6] S. Liberatore, S. Jaoue, E. Tabakhoff and B. Canaud, “Compressible Magnetic Rayleigh-Taylor Instability in Stratified Plasmas: Comparison of Analytical and Numerical Results in the Linear Regime,” Physics of Plasmas, Vol. 16, No. 4, 2009, Article ID: 044502, p 4. doi:10.1063/1.3109664
[7] R. J. Goldston and P. H. Rutherford, “Introduction to Plasma Physics Institute of Physics,” Taylor & Francis, London, 1997. doi:10.1201/9781439822074
[8] Z. Wu, W. Zhang, D. Li and W. Yang, “Effect of Magnetic Field and Equilibrium Flow on Rayleigh-Taylor Instability,” Chinese Physics Letters, Vol. 21, No. 10, 2004, pp. 2001-2004. doi:10.1088/0256-307X/21/10/038
[9] P. A. Markowic, C. A. Ringhofer and C. Schmeiser, “Semiconductor Equations,” Springer-Verlag, New York, 1990. doi:10.1007/978-3-7091-6961-2
[10] M. Opher, L. O. Silva, D. E. Dauger, V. K. Decyk and J. M. Dawson, “Nuclear Reaction Rates and Energy in Stellar Plasmas: The Effect of Highly Damped Modes,” Physics of Plasmas, Vol. 8, No. 5, 2001, pp. 2454-2460. doi:10.1063/1.1362533
[11] Y. D. Jung, “Quantum-Mechanical Effects on Electron-Electron Scattering in Dense High-Temperature Plasmas,” Physics of Plasmas, Vol. 8, 2001, p. 83842.
[12] D. Kremp, Th. Bornath, M. Bonitz and M. Schlanges, “Quantum Kinetic Theory of Plasmas in Strong Laser Fields,” Physical Review E, Vol. 60, No. 4, 1999, pp. 4725-4732. doi:10.1103/PhysRevE.60.4725
[13] M. Leontovich, “On a Method for Solving the Problem of Electromagnetic Wave Propagation along the Earth Surface,” Lzv. Akad. Nauk SSSR. Ser. Fiz, Vol. 8, 1994, pp. 16-22.
[14] G. Agrawal, “Nonlinear Fiber Optics,” Academic Press, San Diego, 1995.
[15] G. Manfredi and F. Haas, “Self-Consistent Fluid Model for a Quantum Electron Gas,” Physical Review B, Vol. 64, No. 7, 2001, Article ID: 075316, p 7. doi:10.1103/PhysRevB.64.075316
[16] G. Manfredi, “How to Model Quantum Plasmas,” Fields Institute Communications Series, Vol. 46, 2005, pp. 263-287.
[17] G. Gardner, “The Quantum Hydrodynamic Model for Semiconductor Devices,” SIAM Journal on Applied Mathematics, Vol. 54, No. 2, 1994, pp. 409-427. doi:10.1137/S0036139992240425
[18] F.Haas, G. Manfredi and M. Feix, “Multistream Model for Quantum Plasmas,” Physical Review E, Vol. 62, No. 2, 2000, pp. 2763-2772. doi:10.1103/PhysRevE.62.2763
[19] B. Eliasson and P. K. Shukla, “Dispersion Properties of Electrostatic Oscillations in Quantum Plasmas,” Journal of Plasma Physics, Vol. 76, No. 1, 2010, pp. 7-17. doi:10.1017/S0022377809990316
[20] J. H. Jeans, “Astronomy and Cosmogony,” Cambridge University Press, Cambridge, 2009.
[21] B. Vitaly, M. Marklund and M. Modestov, “The Rayleigh-Taylor Instability and Internal Waves in Quantum Plasmas,” Physics Letters A, Vol. 372, No. 17, 2008, pp. 3042-3045. doi:10.1016/j.physleta.2007.12.065
[22] J. T. Cao, H. J. Ren, Z. W. Wu and P. K. Chu, “Quantum Effects on Rayleigh-Taylor Instability in Magnetized Plasma,” Physics of Plasmas, Vol. 15, No. 1, 2008, Article ID: 012110. doi:10.1063/1.2833588
[23] G. A. Hoshoudy, “Quantum Effects on Rayleigh-Taylor Instability of Incompressible Plasma in a Vertical Magnetic Field,” Chinese Physics Letters, Vol. 27, No. 12, 2010, Article ID: 125201. doi:10.1088/0256-307X/27/12/125201
[24] G. A. Hoshoudy, “Rayleigh-Taylor Instability in Quantum Magnetized Viscous Plasma,” Plasma Physics Reports, Vol. 37, No. 9, 2011, pp. 775-784. doi:10.1134/S1063780X11080046
[25] G. A. Hoshoudy, “Quantum Effects on Rayleigh-Taylor Instability in a Vertical Inhomogeneous Rotating Plasma,” Physics of Plasmas, Vol. 16, No. 2, 2009, Article ID: 024501, p 4. doi:10.1063/1.3080202
[26] G. A. Hoshoudy, “Quantum Effects on Rayleigh-Taylor Instability in a Horizontal Inhomogeneous Rotating Plasma,” Physics of Plasmas, Vol. 16, No. 6, 2009, Article ID: 064501, p 4.
[27] M. Modestov, V. Bychkov and M. Marklund, “The Rayleigh-Taylor Instability in Quantum Magnetized Plasma with Para- and Ferromagnetic Properties,” Physics of Plasmas, Vol. 16, No. 3, 2009, Article ID: 032106, p 12. doi:10.1063/1.3085796
[28] G. A. Hoshoudy, “Quantum Effects on the Rayleigh-Taylor Instability of Stratified Fluid/Plasma through Porous Media,” Physics Letters A, Vol. 373, No. 30, 2009, pp. 2560-2567.
[29] G. A. Hoshoudy, “Quantum Effects on the Rayleigh- Taylor Instability of Stratified Fluid/Plasma through Brinkman Porous Media,” Journal of Porous Media, Vol. 15, No. 4, 2012, pp. 373-381. doi:10.1615/JPorMedia.v15.i4.50
[30] S. Ali, Z. Ahmed, M. Arshad Mirza and I. Ahmad, “Rayleigh-Taylor/Gravitational Instability in Dense Magnetoplasmas,” Physics Letters A, Vol. 373, No. 33, 2009, pp. 2940-2946. doi:10.1016/j.physleta.2009.06.021