PID Stabilization of Linear Neutral Time-Delay Systems in a Numerical Approach

Show more

References

[1] J. P. Richard, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems,” Automatica, Vol. 39, No. 10, 2003, pp. 1667-1694.
doi:10.1016/S0005-1098(03)00167-5

[2] J. E. Normey-Rico and E. F. Camacho, “Control of Dead-Time Processes,” Springer-Verlag, London, 2007.

[3] V. B. Kolmanovskii and J. P. Richard, “Stability of Some Linear Systems with Delays,” IEEE Transactions on Automatic Control, Vol. 44, No. 5, 1999, pp. 984-989.
doi:10.1109/9.763213

[4] J. K. Hale and S. M. V. Lunel, “Introduction to Functional Differential Equations,” Springer-Verlag, New York, 1993.

[5] L. Dugard and E. E. Verriest, “Stability and Control of Time-Delay Systems,” Springer, New York, 1998.
doi:10.1007/BFb0027478

[6] S. I. Niculescu and R. Lozano, “On the Passivity of Linear Delay Systems,” IEEE Transactions on Automatic Control, Vol. 46, No. 3, 2001, pp. 460-464.
doi:10.1109/9.911424

[7] K. Gu, V. L. Kharitonov and J. Chen, “Stability of Time-Delay Systems,” Birkhauser, Boston, 2003.
doi:10.1007/978-1-4612-0039-0

[8] J. R. Partingtona and C. Bonnet, “H∞ and BIBO Stabilization of Delay Systems of Neutral Type,” Systems & Control Letters, Vol. 52, No. 3, 2004, pp. 283-288.
doi:10.1016/j.sysconle.2003.09.014

[9] S. I. Niculescu, “Delay Effects on Stability: A Robust Control Approach,” Springer, New York, 2001.

[10] V. B. Kolmanovskii and A. D. Myshkis, “Applied Theory of Functional Differential Equations,” Kluwer, Dordrecht, 1992.

[11] V. B. Kolmanovskii and V. R. Nosov, “Stability of Functional Differential Equations,” Academic Press, New York, 1986.

[12] J. H. Park and O. Kwon, “On New Stability Criterion for Delay-Differential Systems of Neutral Type,” Applied Mathematics and Computation, Vol. 162, No. 2, 2005, pp. 627-637. doi:10.1016/j.amc.2004.01.001

[13] V. Chellaboina, A. Kamath and W. M. Haddad, “TimeDomain Sufficient Conditions for Stability Analysis of Linear Neutral Time-Delay Systems,” Proceedings of the 2007 American Control Conference, New York, 9-13 July 2007, pp. 4917-4918.

[14] Z. H. Wang, “Numerical Stability Test of Neutral Delay Differential Equations,” Hindawi Publishing Corporation, Cairo, 2008, pp. 1-10.

[15] J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,” Transactions on ASME, Vol. 64, 1942, pp. 759-768.

[16] S. Yamamoto and I. Hashimoto, “Present Status and Future Needs: The View from Japanese Industry,” Chemical Process Control—CPCIV: Proceedings of 4th International Conference on Chemical Process Control, Padre Island, 17-22 February 1991, pp. 1-28.

[17] C. Dey and R. K. Mudi, “An Improved Auto-Tuning Scheme for PID Controllers,” ISA Transactions, Vol. 48, No. 4, 2009, pp. 396-408.
doi:10.1016/j.isatra.2009.07.002

[18] B. Fang, “Computation of Stabilizing PID Gain Regions Based on the Inverse Nyquist Plot,” Journal of Process Control, Vol. 20, No. 10, 2010, pp. 1183-1187.
doi:10.1016/j.jprocont.2010.07.004

[19] N. Tan, “Computation of Stabilizing PI and PID Controllers for Processes with Time Delay,” ISA Transactions, Vol. 44, No. 2, 2005, pp. 213-223.
doi:10.1016/S0019-0578(07)90000-2

[20] K. W. Ho, A. Datta and S. P. Bhattacharya, “Generalizations of the Hermite-Biehler Theorem,” Linear Algebra and Its Applications, Vol. 302-303, 1999, pp. 135-153.
doi:10.1016/S0024-3795(99)00069-5

[21] K. W. Ho, A. Datta and S. P. Bhattacharya, “PID Stabilization of LTI Plants with Time-Delay,” Proceedings of 42nd IEEE Conference on Decision and Control, Maui, 9-12 December 2003, pp. 4038-4043.

[22] G. J. Silva, A. Datta and S. P. Bhattacharyya, “PID Controllers for Time-Delay Systems,” Birkh?user, Boston, 2005.

[23] W. Michiels, K. Engelborghs, P. Vansevenant and D. Roose, “Continuous Pole Placement Method for Delay Equations,” Automatica, Vol. 38, No. 5, 2002, pp. 747761. doi:10.1016/S0005-1098(01)00257-6

[24] Z. H. Wang and H. Y. Hu, “Calculation of the Rightmost Characteristic Root of Retarded Time-Delay Systems via Lambert W Function,” Journal of Sound and Vibration, Vol. 318, No. 4-5, 2008, pp. 757-767.
doi:10.1016/j.jsv.2008.04.052

[25] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics, Vol. 5, No. 4, 1996, pp. 329-359. doi:10.1007/BF02124750

[26] H. Y. Hu and Z. H. Wang, “Dynamics of Controlled Mechanical Systems with Delayed Feedback,” SpringerVerlag, Berlin Heidellberg, 2002.