Computation of Optical Force on Nanoparticles Using Locally Non-Orthogonal Overlapping Yee FDTD Method

Affiliation(s)

Department of Mathematical Sciences, Delaware State University, Dover, USA.

Arizona Center for Mathematical Sciences at Department of Mathematics, The University of Arizona, Tucson, USA...

Department of Mathematical Sciences, Delaware State University, Dover, USA.

Arizona Center for Mathematical Sciences at Department of Mathematics, The University of Arizona, Tucson, USA...

Abstract

In this paper, a locally non-orthogonal overlapping Yee (OY) FDTD method is proposed in order to accurately calculates the optical force on dielectric and dispersive nanoparticles. It extends our previous work to geometries with sharp corners and dispersive materials. In addition to consistently achieving the smallest errors in comparison to the standard FDTD method, the OY approach is a stable non-orthogonal FDTD method that attains second-order convergence when sharp corners are present.

In this paper, a locally non-orthogonal overlapping Yee (OY) FDTD method is proposed in order to accurately calculates the optical force on dielectric and dispersive nanoparticles. It extends our previous work to geometries with sharp corners and dispersive materials. In addition to consistently achieving the smallest errors in comparison to the standard FDTD method, the OY approach is a stable non-orthogonal FDTD method that attains second-order convergence when sharp corners are present.

Cite this paper

J. Liu, M. Brio and J. Moloney, "Computation of Optical Force on Nanoparticles Using Locally Non-Orthogonal Overlapping Yee FDTD Method,"*Journal of Electromagnetic Analysis and Applications*, Vol. 4 No. 11, 2012, pp. 452-456. doi: 10.4236/jemaa.2012.411063.

J. Liu, M. Brio and J. Moloney, "Computation of Optical Force on Nanoparticles Using Locally Non-Orthogonal Overlapping Yee FDTD Method,"

References

[1] A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,” Physical Review Letters, Vol. 24, No. 4, 1970, pp. 156-159. doi:10.1103/PhysRevLett.24.156

[2] A. Ashkin and J. M. Dziedzic, “Optical Levitation by Radiation Pressure,” Applied Physics Letters, Vol. 19, No. 8, 1971, pp. 283-285. doi:10.1063/1.1653919

[3] K. C. Neuman and S. M. Block, “Optical Trapping,” Review of Scientific Instruments, Vol. 75, No. 9, 2004, pp. 2787-2809. doi:10.1063/1.1785844

[4] M. Dienerowitz, M. Mazilu and K. Dholakia, “Optical Manipulation of Nanoparticles: A Review,” Journal of Nanophotonics, Vol. 2, No. 1, 2008, Article ID: 021875.
doi:10.1117/1.2992045

[5] A. R. Zakharian, M. Mansuripur and J. V. Moloney, “Radiation Pressure and the Distribution of Electromagnetic Force in Dielectric Media,” Optics Express, Vol. 13, No. 7, 2005, pp. 2321-2336. doi:10.1364/OPEX.13.002321

[6] J. D. Jackson, “Classical Electrodynamics,” 2nd Edition, Wiley, New York, 1975.
doi:10.1103/PhysRevB.61.14119

[7] P. C. Chaumet and M. Nieto-Vesperinas, “Coupled Dipole Method Determination of the Electromagnetic Force on a Particle over a Flat Dielectric Substrate,” Physical Review B, Vol. 61, No. 20, 2000, pp. 14119-14127.

[8] M. I. Mishchenko, L. D. Travis and D. W. Mackowski, “T-Matrix Computations of Light Scattering by Nonspherical Particles: A Review,” Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 55, No. 5, 1996, pp. 535-575. doi:10.1016/0022-4073(96)00002-7

[9] K. Okamoto and S. Kawata, “Radiation Force Exerted on Subwavelength Particles near a Nanoaperture,” Physical Review Letters, Vol. 83, No. 22, 1999, pp. 4534-4537.
doi:10.1103/PhysRevLett.83.4534

[10] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 1966, pp. 302-307.
doi:10.1109/TAP.1966.1138693

[11] A. Taflove and S. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” 3rd Edition, Artech House, Norwood, 2005.

[12] T. G. Jurgens, A. Taflove, K. R. Umashankar and T. G. Moore, “Finite-Difference Time-Domain Modeling of Curved Surfaces,” IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 1992, pp. 357-366.
doi:10.1109/8.138836

[13] S. Dey and R. Mittra, “A Conformal Finite-Difference Time-Domain Technique for Modeling Cylindrical Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1999, pp. 17371739. doi:10.1109/22.788616

[14] A. Mohammadi, H. Nadgaran and M. Agio, “Contour path Effective Permittivities for the Two-Dimensional Finite-Difference Time-Domain Method,” Optics Express, Vol. 13, No. 25, 2005, pp. 10367-10381.
doi:10.1364/OPEX.13.010367

[15] N. Kaneda, B. Houshmand and T. Itoh, “FDTD Analysis of Dielectric Resonators with Curved Surfaces,” IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 9, 1997, 1645-1649. doi:10.1109/22.622937

[16] A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson and G. W. Burr, “Improving Accuracy by Subpixel Smoothing in the Finite-Difference Time Domain,” Optics Letters, Vol. 31, No. 20, 2006, pp. 2972-2974. doi:10.1364/OL.31.002972

[17] A. F. Oskooi, C. Kottke and S. G. Johnson, “Accurate Finite-Difference Time-Domain Simulation of Anisotropic Media by Subpixel Smoothing,” Optics Letters, Vol. 34, No. 18, 2009, pp. 2778-2780.
doi:10.1364/OL.34.002778

[18] G. R. Werner and J. R. Cary, “A Stable FDTD Algorithm for Non-Diagonal, Anisotropic Dielectrics,” Journal of Computational Physics, Vol. 226, No. 1, 2007, pp. 10851101. doi:10.1016/j.jcp.2007.05.008

[19] J. Liu, M. Brio and J. V. Moloney, “Overlapping Yee FDTD Method on Nonorthogonal Grids,” Journal of Scientific Computing, Vol. 39, No. 1, 2009, pp. 129-143.
doi:10.1007/s10915-008-9253-1

[20] J. Liu, M. Brio and J. V. Moloney, “A Diagonal Split Cell Model for the Overlapping Yee FDTD Method,” Acta Mathematica Scientia, Vol. 29, No. 6, 2009, pp. 16701676. doi:10.1016/S0252-9602(10)60009-4

[21] D. A. Calhoun, C. Helzel and R. J. LeVeque, “Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains,” SIAM Review, Vol. 50, No. 4, 2008, pp. 723-752. doi:10.1137/060664094