AS  Vol.3 No.7 , November 2012
Global sensitivity analysis for choosing the main soil parameters of a crop model to be determined
Abstract: The use of a crop model like STICS for appropriate management decision support requires a good knowledge of all the parameters of the model. Among them, the soil parameters are difficult to know at each point of interest and costly techniques may be used to measure them. It is therefore important to know which soil parameters need to be determined. It can be stated that those which affect significantly the output variable deserve an accurate determination while those which slightly affect the model output variable do not. This paper demonstrates how a global sensitivity analysis method based on variance decomposition can be applied on soil parameters in order to divide them in the two categories. The Extended FAST method applied to the crop model STICS and a set of 13 soil parameters first allows to calculate the part of variance explained by each soil parameter (giving global sensitivity indices of the soil parameters) and the coefficient of variation of the output variables (measuring the effect of the parameter uncertainty on each variable). These metrics are therefore used for deciding on the importance of the parameter value measurement. Different output variables (Leaf Area Index and chlorophyll content) are evaluated at different stages of interest while others (crop yield, grain protein content, soil mineral nitrogen) are evaluated at harvest. The analysis is applied on two different annual crops (wheat and sugar beet), two contrasted weather and two types of soil depth. When the uncertainty of the output generated by the soil parameters is large (coefficient of variation > 1/3), only the parameters having a significant global sensitivity indices (higher than 10%) are retained. The results show that the number of soil parameters which deserve an accurate determination can be significantly reduced by the use of this relevant method for appropriate management decision support.
Cite this paper: Varella, H. , Buis, S. , Launay, M. and Guérif, M. (2012) Global sensitivity analysis for choosing the main soil parameters of a crop model to be determined. Agricultural Sciences, 3, 949-961. doi: 10.4236/as.2012.37116.

[1]   Batchelor, W.D., Basso, B. and Paz, J.O. (2002) Examples of strategies to analyze spatial and temporal yield variability using crop models. European Journal of Agronomy, 18, 141-158. doi:10.1016/S1161-0301(02)00101-6

[2]   Gabrielle, B., Roche, R., Angas, P., Cantero-Martinez, C., Cosentino, L., Mantineo, M., Langensiepen, M., Henault, C., Laville, P., Nicoullaud, B. and Gosse, G. (2002) A priori parameterisation of the CERES soil-crop models and tests against several European data sets. Agronomie, 22, 119-132. doi:10.1051/agro:2002003

[3]   Houlès, V., Mary, B., Guérif, M., Makowski, D. and Juste, E. (2004) Evaluation of the crop model STICS to recommend nitrogen fertilization rates according to agroenvironmental criteria. Agronomie, 24, 1-9. doi:10.1051/agro:2004036

[4]   Launay, M. and Guérif, M. (2003) Ability for a model to predict crop production variability at the regional scale: An evaluation for sugar beet. Agronomie, 23, 135-146. doi:10.1051/agro:2002078

[5]   Tremblay, M. and Wallach, D. (2004) Comparison of parameter estimation methods for crop models. Agronomie, 24, 351-365. doi:10.1051/agro:2004033

[6]   Varella, H., Guérif, M., Buis, S. and Beaudoin, N. (2010) Soil properties estimation by inversion of a crop model and observations on crop improves the prediction of agro-environmental variables. European Journal of Agronomy, 33, 139-147. doi:10.1016/j.eja.2010.04.005

[7]   Flenet, F., Villon, P. and Ruget, F.O. (2003) Methodology of adaptation of the STICS model to a new crop: Spring linseed (Linum usitatissimum, L.). STICS Workshop, Camargue, FRANCE, 367-381.

[8]   Hadria, R., Khabba, S., Lahrouni, A., Duchemin, B., Chehbouni, A., Carriou, J. and Ouzine, L. (2007) Calibration and validation of the STICS crop model for managing wheat irrigation in the semi-arid Marrakech/Al Haouzi plain. Arabian Journal for Science and Engineering, 32, 87-101.

[9]   Singh, A.K., Tripathy, R. and Chopra, U.K. (2008) Evaluation of CERES-Wheat and CropSyst models for waternitrogen interactions in wheat crop. Agricultural Water Management, 95, 776-786. doi:10.1016/j.agwat.2008.02.006

[10]   Guérif, M. and Duke, C. (1998) Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation. European Journal of Agronomy, 9, 127-136. doi:10.1016/S1161-0301(98)00031-8

[11]   Ferreyra, R.A., Jones, J.W. and Graham, W.D. (2006) Parameterizing spatial crop models with inverse modeling: Sources of error and unexpected results. Transactions of the Asabe, 49, 1547-1561.

[12]   Irmak, A., Jones, J.W., Batchelor, W.D. and Paz, J.O. (2001) Estimating Spatially Variable Soil Properties for Application of Crop Models in Precision Farming. Transactions of the ASAE, 44, 1343-1353.

[13]   Nemes, A., Timlin, D.J., Pachepsky, Y.A. and Rawls, W.J. (2009) Evaluation of the Rawls et al. (1982) Pedotransfer Functions for their Applicability at the US National Scale. Soil Science Society of America Journal, 73, 1638-1645.

[14]   King, D., Daroussin, J. and Tavernier, R. (1994) Development of a soil geographic database from the soil map of the European communities. Catena, 21, 37-56. doi:10.1016/0341-8162(94)90030-2

[15]   Bourennane, H., King, D., Couturier, A., Nicoullaud, B., Mary, B. and Richard, G. (2007) Uncertainty assessment of soil water content spatial patterns using geostatistical simulations: An empirical comparison of a simulation accounting for single attribute and a simulation accounting for secondary information. Ecological Modelling, 205, 323-335. doi:10.1016/j.ecolmodel.2007.02.034

[16]   Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005) Electrical resistivity survey in soil science: A review. Soil & Tillage Research, 83, 173-193. doi:10.1016/j.still.2004.10.004

[17]   Braga, R.P. and Jones, J.W. (2004) Using optimization to estimate soil inputs of crop models for use in site-specific management. Transactions of the ASAE, 47, 1821-1831.

[18]   Varella, H., Guérif, M. and Buis, S. (2010) Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environmental Modelling & Software, 25, 310-319. doi:10.1016/j.envsoft.2009.09.012

[19]   Bouman, B.A.M. (1994) A framework to deal with uncertainty in soil and management parameters in crop yield simulation: A case-study for rice. Agricultural Systems, 46, 1-17. doi:10.1016/0308-521X(94)90166-D

[20]   St'astna, M. and Zalud, Z. (1999) Sensitivity analysis of soil hydrologic parameters for two crop growth simulation models. Soil & Tillage Research, 50, 305-318. doi:10.1016/S0167-1987(99)00021-5

[21]   Saltelli, A., Chan, K. and Scott, E.M. (2000a). Sensitivity Analysis. John Wiley and Sons, New York.

[22]   Aggarwal, P.K. (1995) Uncertainties in crop, soil and weather inputs used in growth-models: Implications for simulated outputs and their applications. Agricultural Systems, 48, 361-384. doi:10.1016/0308-521X(94)00018-M

[23]   Blasone, R.S., Madsen, H. and Rosbjerg, D. (2008) Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov chain Monte Carlo sampling. Journal of Hydrology, 353, 18-32. doi:10.1016/j.jhydrol.2007.12.026

[24]   Lawless, C., Semenov, M.A. and Jamieson, P.D. (2008) Quantifying the effect of uncertainty in soil moisture characteristics on plant growth using a crop simulation model. Field Crops Research, 106, 138-147. doi:10.1016/j.fcr.2007.11.004

[25]   Tolson, B.A. and Shoemaker, C.A. (2008) Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research, 44, W04411. doi:10.1029/2007WR005869

[26]   Van der Keur, P., Hansen, J.R., Hansen, S. and Refsgaard, J.C. (2008) Uncertainty in simulation of nitrate leaching at field and catchment scale within the odense river basin. Vadose Zone Journal, 7, 10-21. doi:10.2136/vzj2006.0186

[27]   Campolongo, F. and Saltelli, A. (1997) Sensitivity analysis of an environmental model an application of different analysis methods. Reliability Engineering & System Safety, 57, 49-69. doi:10.1016/S0951-8320(97)00021-5

[28]   Gomez-Delgado, M. and Tarantola, S. (2006) GLOBAL sensitivity analysis, GIS and multi-criteria evaluation for a sustainable planning of a hazardous waste disposal site in Spain. International Journal of Geographical Information Science, 20, 449-466. doi:10.1080/13658810600607709

[29]   Lamboni, M., Makowski, D., Lehuger, S., Gabrielle, B. and Monod, H. (2009) Multivariate global sensitivity analysis for dynamic crop models. Field Crops Research, 113, 312-320. doi:10.1016/j.fcr.2009.06.007

[30]   Makowski, D., Naud, C., Jeuffroy, M.H., Barbottin, A. and Monod, H. (2006) Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction. Reliability Engineering & System Safety, 91, 1142-1147. doi:10.1016/j.ress.2005.11.015

[31]   Pathak, T.B., Fraisse, C.W., Jones, J.W., Messina, C.D. and Hoogenboom, G. (2007) Use of global sensitivity analysis for CROPGRO cotton model development. Transactions of the ASABE, 50, 2295-2302.

[32]   Saltelli, A., Tarantola, S. and Campolongo, F. (2000) Sensitivity analysis as an ingredient of modeling. Statistical Science, 15, 377-395. doi:10.1214/ss/1009213004

[33]   Brisson, N., Launay, M., Mary, B. and Beaudoin, N. (2008) Conceptual basis, formalisations and parameterization of the STICS crop model. Quae, Versailles.

[34]   Brisson, N., Ruget, F., Gate, P., Lorgeou, J., Nicoullaud, B., Tayot, X., Plenet, D., Jeuffroy, M.H., Bouthier, A., Ripoche, D., Mary, B. and Juste, E. (2002) STICS: A generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 22, 69-92. doi:10.1051/agro:2001005

[35]   Launay, M., Graux, A.-I., Brisson, N. and Guérif, M. (2009) Carbohydrate remobilization from storage root to leaves after a stress release in sugar beet (Beta vulgaris L.): Experimental and modelling approaches. The Journal of Agricultural Science, 147, 669-682. doi:10.1017/S0021859609990116

[36]   Cariboni, J., Gatelli, D., Liska, R. and Saltelli, A. (2004) The role of sensitivity analysis in ecological modelling. 4th Conference of the International Society for Ecological Informatics, Busan, 24-28 October 2004, 167-182.

[37]   Chan, K., Tarantola, S., Saltelli, A. and Sobol, I.M. (2001) Variance-based methods. In: Saltelli, A., Chan, K. and Scott, E.M., Eds., Sensitivity Analysis, Wiley, New York, 167-197.

[38]   Ratto, M., Young, P.C., Romanowicz, R., Pappenberger, F., Saltelli, A. and Pagano, A. (2007) Uncertainty, sensitivity analysis and the role of data based mechanistic modeling in hydrology. Hydrology and Earth System Sciences, 11, 1249-1266. doi:10.5194/hess-11-1249-2007

[39]   Saltelli, A. and Bolado, R. (1998) An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics & Data Analysis, 26, 445-460. doi:10.1016/S0167-9473(97)00043-1

[40]   Saltelli, A., Tarantola, S. and Chan, K.P.S. (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 41, 39-56. doi:10.1080/00401706.1999.10485594

[41]   Guérif, M., Beaudoin, N., Durr, C., Machet, J.M., Mary, B., Michot, D., Moulin, D., Nicoullaud, B. and Richard, G. (2001) Designing a field experiment for assessing soil and crop spatial variability and defining site specific management strategies. Proceedings 3rd European Conference on Precision Agriculture, Montpellier, 677-682.