[1] Yi, J.Y., Choi, J.W., Jeon, B.Y. and Park, D.H. (2012) Effect of a low-voltage electric pulse charged to culture soil on plant growth and variation of the bacterial community. Agricultural Sciences, 3, 339-346. doi:10.4236/as.2012.33038
[2] Liu, S.Q., Wu, N.J. and Ignatiev, A. (2000) Electric-pulse-induced reversible resistance change effect in magnetoresitive films. Applied Physics Letters, 76, 2749-2751. doi:10.1063/1.126464
[3] Meilhoc, E., Masson, J.M. and Teissié, J. (1990) High efficiency transformation of intact yeast cells by electric field pulse. Nature Biotechnology, 8, 223-227. doi:10.1038/nbt0390-223
[4] Glick, B.R., Karaturovic, D.M. and Newell, P.C. (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonads. Canadian Journal of Microbiology, 41, 533-536. doi:10.1139/m95-070
[5] Kennedy, I.R., Perg-Gerk, L.L., Wood, C., Deaker, R., Gilchrist, K. and Katupitiya, S. (1997). Biological nitrogen fixation in non-leguminous field crop: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil, 194, 65-79. doi:10.1023/A:1004260222528
[6] Kleeberger, A., Castroph, H. and Klingmuller, W. (1983) The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Archives of Microbiology, 136, 306-311. doi:10.1007/BF00425222
[7] Sakthivel, N. and Gnanamanikam, SS. (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhances in rice (Oryza sativa L.). Applied and Environmental Microbiology, 53, 2056-2059.
[8] Ochs, M., Brunner, I., Stumm, W. and Cosovic, B. (1993) Effects of root exudates and humic substances on weathering kinetics. Water, Air and Soil Pollution, 68, 213-229. doi:10.1007/BF00479404
[9] House, K.Z., House, C.H., Schrag, D.P. and Aziz, M.J. (2007) Electrochemical accelaeation of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change. Environmental Science & Technology, 41, 8864-8870. doi:10.1021/es0701816
[10] Jenny, H. and Overstreet, R. (1939) Surface migration of ions and contact exchange. Journal of Physical Chemistry, 43, 1185-1196. doi:10.1021/j150396a010
[11] Unwin, P.R. and Bard, A.J. (1992) Scanning electrochemical microscopy. 14. Scanning electrochemical microscope induced desorption: A new technique for the measurement of adsorption/desorption kinetics and surface diffusion rates at the solid/liquid interface. The Journal of Physics Chemistry, 96, 5035-5045.
[12] Zhou, W., Inoue, S., Iwahashi, t., Kanai, K., Seki, K., Miyamae, T., Kim D., Katayama, Y. and Ouchi, Y. (2010) Double layer structure and adsorption/desorption hysteresis of neat inonic on Pt electrode surface-an in-situ IR-visible sum-frequency generation spectroscopic study. Electrochemistry Communication, 12, 672-675. doi:10.1016/j.elecom.2010.03.003
[13] Yeung, A.T. Hsu, C. and Menon, R.M. (1997) Physicochemical soil-contaminant interactions during electrokinetic extraction. Journal of Hazardous Materials, 55, 221-237. doi:10.1016/S0304-3894(97)00017-4
[14] Palaniappan, S., Sastry, S.K. and Richter, E.R. (1990) Effects of electricity on microorganisms: A review. Journal of Food Processing & Preservation, 14, 393-414. doi:10.1111/j.1745-4549.1990.tb00142.x
[15] Zhang, Q., Qin, B.L., Barbosa-Cánovas, G.V. and Swanson, B.G. (1995) Inactivation of E. coli for food pasteurization by high-strength pulsed electric fields. Journal of Food Processing & Preservation, 19, 103-118. doi:10.1111/j.1745-4549.1995.tb00281.x
[16] Grahl, T. and Maerkl, H. (1996) Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45, 148-157. doi:10.1007/s002530050663
[17] Hulsheger, H., Potel, J. and Niemann, E.G. (1983) Electric field effects on bacteria and yeast cells. Radiation and Environmental Biophysics, 22, 149-162. doi:10.1007/BF01338893
[18] Marquez, V.O., mittal, G.S. and Griffiths, M.W. (1997) Destruction and inhibition of bacterial spores by high voltage pulsed electric field. Food Science, 62, 399-401. doi:10.1111/j.1365-2621.1997.tb04010.x
[19] Chiwacha, S.D.S., Abrams, S.R., Amberose, S.J., Cutler, A.J., Loewen, M., Ross, A.R.S. and Kermode, A.R. (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: An analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. The Plant Journal, 35, 405-471. doi:10.1046/j.1365-313X.2003.01800.x
[20] Kojima, M., Kamada-Nobusada, T., Komatsu, H., Takei, K., Kuroha, T., Mizutani, M., Ashikari, M., Ueguchi-Tanaka, M., Matsuoke, M., Suzuki, K. and Sakakibara, H. (2009) Highly sensitive and high-throughput analysis of plant hormones using msprobe modification and liquid chromatography-tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiology, 50, 1201-1214. doi:10.1093/pcp/pcp057
[21] Kronzucker, H.J., Siddiqi, M.Y., Glass A.D.J. and Kirk G.J.D. (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiology, 119, 1041-1046. doi:10.1104/pp.119.3.1041
[22] Cao, W. and Tibbits, T.W. (1993) Study of various / mixtures for enhanced growth of potatoes. Journal of Plant Nutrition, 16, 1691-1704. doi:10.1080/01904169309364643
[23] Lees, H. and Simpson, J.R. (1957) The biochemistry of the nitrifying organisms. Nitrite oxidation by Nitrobacter. Biochemical Journal, 65, 297-305.
[24] Belser, L.W. and Mays, E.L. (1980) Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soil and sediments. Applied and Environmental Microbiology, 39, 505-510.
[25] Rice, C.W. and Tiedje, J.M. (1989) Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms, Soil Biology and Biochemistry, 21, 597- 602. doi:10.1016/0038-0717(89)90135-1
[26] Jiang, L., Wang R., Li, X., Jiang, L. and Lu, G. (2005) Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon modified electrode. Electrochemistry Communication, 7, 597-601. doi:10.1016/j.elecom.2005.04.009
[27] Freitas, J.R., Banerjee, M.R. and Germida, J.J. (1997) Phosphatesolubilizing rhizo-bacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biology and Fertility of Soil, 24, 358-364. doi:10.1007/s003740050258
[28] Narsian, V. and Patel, H.H. (2000) Aspertgillus aculeatus as a rock phosphate solubilizer. Soil Biology& Biochemistry, 32, 559-565. doi:10.1016/S0038-0717(99)00184-4
[29] Hilda, R. and Reynaldo, F. (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339. doi:10.1016/S0734-9750(99)00014-2
[30] Shenker, M., Seitelbach, S., Brand, S., Haim, A. and Litaor, M.I. (2005) Redox reactions and phosphorus release in reflooded soils of an altered wetland. European Journal of Soil Science, 56, 515-525. doi:10.1111/j.1365-2389.2004.00692.x
[31] Uroz, S., Calvaruso, C., Turpault, M.P. and Frey-Klett, P. (2009) Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends in Microbiology, 17, 378-387. doi:10.1016/j.tim.2009.05.004
[32] Ayllon, E.S., Granese, S.L. and Rosales, B.M. (1990) Electrochemical response of weathering and plain c steels in different environments. Corrosion Reviews, 9, 246-269. doi:10.1515/CORRREV.1990.9.3-4.245
[33] Yamaguchi, K.E. (2001) Evolution of the geochemical cycles of redox-sensitive elements. Frontier Research on Earth Evolution, 1, 249-252.