From Dynamic Linear Evaluation Rule to Dynamic CAPM in a Fractional Brownian Motion Environment

Show more

References

[1] P. H. Dybvig and J. E. Ingersoll, “Mean-Variance Theory in Complete Markets,” Journal of Business, Vol. 55, No. 2, 1982, pp. 233-251. doi:10.1086/296162

[2] L. P. Hansen and S. F. Richard, “The Role of Conditioning Information in Deducing Testable Restrictions Implied by Dynamic Asset Pricing Models,” Econometrica, Vol. 55, No. 3, 1987, pp. 587-614. doi:10.2307/1913601

[3] J. H. Cochrane, “Asset Pricing,” Princeton University Press, Princeton, 2001.

[4] S. Z. Shi, “Ten Presentations of Financial Econometrics,” Shanghai Dometic Publishing, Shanghai, 2004.

[5] Q. Zhou and W. X. Wu, “From Dynamic Linear Evaluation Rule to Dynamic Capital Asset Pricing Model,” System EngineeringTheory and Practice, Vol. 27, No. 5, 2007, pp. 48-54. doi:10.1016/S1874-8651(08)60033-2

[6] H. E. Hurst, “Long-Term Storage Capacity in Reservoirs,” Transactions of the American Society of Civil Engineers, Vol. 55, 1951, pp. 400-410.

[7] H. E. Hurst, “Methods of Using Long-Term Storage in Reservoirs,” Proceedings of the Institution of Civil Engineers Part 1, Vol. 5, 1956, pp. 519-590.

[8] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian Motions, Fractional Noises and Applications,” SIAM Review, Vol. 10, No. 4, 1968, pp. 422-437.
doi:10.1137/1010093

[9] Y. Hu and B. Oksendal, “Fractional White Noise Calculus and Applications to Finance, Infinite Dimensional Analysis,” Quantum Probability and Related Topics, Vol. 6, No. 1, 2003, pp. 1-32.

[10] Y. Hu, B. ?ksendal and A. Sulem, “Optimal Consumption and Portfolio in a Black-Scholes Market Driven by Fractional Brownian Motion,” Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 6, No. 4, 2003, pp. 519-536.
doi:10.1142/S0219025703001432

[11] B. B. Mandelbrot, “Fractals and Scaling in Finance: Discontinuity, Concentration, Risk,” Springer & Verlag, Berlin, 1997.

[12] A. Shiryaev, “On Arbitrage and Replication for Fractal Models,” In: A. Shiryaev and A. Sulem, Eds., Workshop on Mathematical Finance, INRIA, Paris, 1998.

[13] Y. Hu, “Integral Transformations and Anticipative Calculus for Fractional Brownian Motions,” American Mathematical Society, Providence, 2005.

[14] F. Biagini, Y. Hu, B. Oksendal and T. S. Zhang, “Stochastic Calculus for Fractional Brownian Motion and Applications,” Springer, London, 2008.
doi:10.1007/978-1-84628-797-8

[15] V. Pipiras and M. S. Taqqu, “Integration Questions Related to Fractional Brownian Motion,” Probability Theory and Related Fields, Vol. 118, 2000, pp. 251-291.
doi:10.1007/s440-000-8016-7

[16] T. E. Duncan, Y. Hu and B. Pasik-Duncan, “Stochastic Calculus for Fractional Brownian Motion,” SIAM Journal on Control and Optimization, Vol. 38, No. 2, 2000, pp. 582-612. doi:10.1137/S036301299834171X

[17] Y. Hu and S. Peng, “Backward Stochastic Differential Equations Driven by Fractional Brownian Motion,” SIAM Journal on Control and Optimization, Vol. 48, No. 3, 2009, pp. 1675-1700. doi:10.1137/070709451