Calculation of Thermal Pressure Coefficient of Dense C15H32, C17H36, C18H38 and C19H40 Using pVT Data

Show more

References

[1] J. L. Daridon, H. Carrier and B. Lagourette, “Pressure Dependence of the Thermophysical Properties of n-Pentadecane and n-Heptadecane,” International Journal of Thermophysics, Vol. 23, No. 3, 2002, pp. 697-708.
doi:10.1023/A:1015451020209

[2] L. Boltzmann, “Lectures on Gas Theory,” University of California Press, Berkeley, 1964.

[3] S. Dutour, J. L. Daridon and B. Lagourette, “Pressure and Temperature Dependence of the Speed of Sound and Related Properties in Normal Octadecane and Nonadecane,” International Journal of Thermophysics, Vol. 21, No. 1, 2000, pp. 173-184. doi:10.1023/A:1006665006643

[4] V. Moeini, “A New Regularity for Internal Pressure of Dense Fluids,” Journal of Physical Chemistry B, Vol. 110, No. 7, 2006, pp. 3271-3275. doi:10.1021/jp0547764

[5] V. Moeini, F. Ashrafi, M. Karri and H. Rahimi, “Calculation of Thermal Pressure Coefficient of Dense Fluids Using the Linear Isotherm Regularity,” Journal of Physics Condensed Matter, Vol. 20, No. 7, 2008.
doi:10.1088/0953-8984/20/7/075102

[6] V. Moeini, “Internal Pressures of Lithium and Cesium Fluids at Different Temperatures,” Journal of Chemical & Engineering Data, Vol. 55, No. 3, 2010, pp. 1093-1099.
doi:10.1021/je900538q

[7] V. Moeini and M. Deilam, “Determination of Molecular Diameter by pVT,” ISRN Physical Chemistry, Vol. 2012, 2012. doi:10.5402/2012/521827

[8] V. Moeini, “Internal Pressures of Sodium, Potassium, and Rubidium Fluids at Different Temperatures,” Journal of Chemical & Engineering Data, Vol. 55, No. 12, 2010, pp. 5673-5680. doi:10.1021/je100627c

[9] R. B. Stewart and T. Jacobsen, “Thermodynamic Properties of Argon from the Triple Point to 1200 K with Pressures to 1000MPa,” Journal of Physical and Chemical Reference Data, Vol. 18, No. 2, 1989, pp. 639-798.
doi:org/10.1063/1.555829

[10] R. D. Goodwin, “Carbonmonoxide Thermophysical Properties from 68 to 1000 K at Pressures to 100MPa,” Journal of Physical and Chemical Reference Data, Vol. 14, No. 4, 1985, pp. 849-933. doi:org/10.1063/1.555742

[11] R. Span and W. Wagner, “A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa,” Journal of Physical and Chemical Reference Data, Vol. 25, No. 6, 1996, pp. 1509-1596.
doi:org/10.1063/1.555991

[12] R. T. Jacobsen, R. B. Stewart and M. Jahangiri, “Thermodynamic Properties of Nitrogen from the Freezing Line to 2000 K at Pressures to 1000MPa,” Journal of Physical and Chemical Reference Data, Vol. 15, No. 2, 1986, pp. 735-909. doi:org/10.1063/1.555754

[13] B. A. Younglove and J. F. Ely, “Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane,” Journal of Physical and Chemical Reference Data, Vol. 16, No. 4, 1987, pp. 577-799.
doi:org/10.1063/1.555785

[14] R. D. Goodwin, “Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar,” Journal of Physical and Chemical Reference Data, Vol. 17, No. 4, 1988, pp. 1541-1637. doi:org/10.1063/1.555813

[15] R. D. Goodwin, “Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar ,” Journal of Physical and Chemical Reference Data, Vol. 18, No. 4, 1989, pp. 1565-1637. doi:org/10.1063/1.555837

[16] Y. Ghayeb, B. Najafi, V. Moeini and G. Parsafar, “Calculation of the Viscosity of Supercritical Fluids Based on the Modified Enskog Theory,” High Temperatures-High Pressures, Vol. 35-36, No. 2, 2003, pp. 217-226.
doi:10.1068/htjr056

[17] G. A. Parsafar, V. Moeini and B. Najafi, “Pressure Dependence of Liquid Vapor Pressure: An Improved Gibbs Prediction,” Iranian Journal of Chemistry and Chemical Engineering, Vol. 20, No. 1, 2001, pp. 37-43.

[18] G. Parsafar and E. A. Mason, “Linear Isotherms for Dense Fluids: A New Regularity,” Journal of Physical Chemistry, Vol. 97, No. 35, 1993, pp. 9048-9053.
doi:10.1021/j100137a035

[19] G. Parsafar and E. A. Mason, “Linear Isotherms for Dense Fluids: Extension to Mixtures,” Journal of Physical Chemistry, Vol. 98, No. 7, 1994, pp. 1962-1967.
doi:10.1021/j100058a040

[20] G. A. Few and M. Rigby, “Thermal Pressure Coefficient and Internal Pressure of 2,2-dimethylpropane,” Journal of Physical Chemistry, Vol. 79, No. 15, 1975, pp. 1543- 1546. doi:10.1021/j100582a013

[21] G. R. Driver and A. G. Williamson, “Thermal Pressure Coefficients of Di-n-alkyl Ethers,” Journal of Chemical & Engineering Data, Vol. 17, No. 1, 1972, pp. 65-66.
doi:10.1021/je60052a034

[22] G. C. Fortune and G. N. Malcolm, “Thermal Pressure Coefficient and the Entropy of Melting at Constant Volume of Isotactic Polypropylene,” Journal of Physical Chemistry, Vol. 71, No. 4, 1967, pp. 876-879.
doi:10.1021/j100863a015

[23] J. M. Harder, M. Silbert, I. Yokoyama and W. H. Young, “The Thermal Pressure Coefficients and Heat Capacities of Simple Liquid Metals ,” Journal of Physics F: Metal Physics, Vol. 9, No. 6, 1979.
doi:10.1088/0305-4608/9/6/007

[24] T. M. Reed and K. E. Gubbins, “Applied Statistical Mechanics,” McGraw-Hill, Inc., New York, 1973.

[25] J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, “Molecular Theory of Gases and Liquids,” 2nd Edition, Wiley, New York, 1964.