OJMIP  Vol.2 No.4 , November 2012
Effectiveness of sub-maximal intermittent exercise on muscle glycogen depletion, PGC-1α and PDK-4 gene expression
Abstract: Several metabolic gene expressions are regulated in concert with muscle glycogen status. We hypothesized that intermittent exercise performed at high but sub-maximal intensities with long recovery periods would induce a low glycogen state that would stimul- ate peroxisome proliferator-activated receptor-γ coa- ctivator-1α (PGC1-α) and pyruvate dehydrogenase kinase-4 (PDK-4) gene expression in muscle. Nine young human subjects performed two intermittent exercise sessions. One session consisted of 60 s cycling bouts at VO2max (IE100%), and the other session consisted of 75 s cycling bouts at 80% VO2max (IE80%). Twelve bouts of exercise were completed in both sessions with a 4 min rest between each bout. Muscle specimens were obtained at pre-exercise and immediately, 1.5 h and 3 h post-exercise. Muscle gly- cogen was significantly decreased after both sessions (IE100%, 94.1 ± 5.8 to 38.7 ± 5.5 mmol/kg w.w.; IE80%, 94.6 ± 9.1 to 53.3 ± 4.8 mmol/kg w.w.; both P < 0.05 vs pre-exercise). Muscle glycogen depletion was greater in IE100% than in IE80% (P < 0.05). PGC-1α and PDK- 4 mRNA expression were significantly increased after exercise in both IE100% and IE80% (PGC-1α: ~3.7 and ~2.9-fold, respectively; PDK-4: ~11.1 and ~3.5-fold, respectively; all P < 0.05). Maximal PDK-4 mRNA expression after exercise was significantly greater in IE100% than in IE80% (P < 0.05). In conclusion, high but sub-maximal intermittent exercise decreased muscle glycogen and stimulated PGC-1a and PDK-4 mRNA expression, suggesting that increasing exercise intensity contributes to muscle glycogen depletion and PDK-4 mRNA expression in human skeletal muscle.
Cite this paper: Shiose, K. , Tobina, T. , Higaki, Y. , Kiyonaga, A. and Tanaka, H. (2012) Effectiveness of sub-maximal intermittent exercise on muscle glycogen depletion, PGC-1α and PDK-4 gene expression. Open Journal of Molecular and Integrative Physiology, 2, 119-126. doi: 10.4236/ojmip.2012.24017.

[1]   Perry, C.G., Lally, J., Holloway, G.P., Heigenhauser, G.J., Bonen, A. and Spriet, L.L. (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. The Journal of Physiology, 588, 4795-4810 doi:10.1113/jphysiol.2010.199448

[2]   Terada, S., Goto, M., Kato, M., Kawanaka, K., Shimokawa, T. and Tabata, I. (2002) Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochemical and Biophysical Research Communications, 296, 350-354. doi:10.1016/S0006-291X(02)00881-1

[3]   Pilegaard, H., Saltin, B. and Neufer, P.D. (2003) Exercise induces transient transcriptional activation of the PGC1alpha gene in human skeletal muscle. The Journal of Physiology, 546, 851-858. doi:10.1113/jphysiol.2002.034850

[4]   Puigserver, P., Wu, Z., Park, C.W, Graves, R., Wright, M. and Spiegelman, B.M. (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92, 829-839. doi:10.1016/S0092-8674(00)81410-5

[5]   Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C. and Spiegelman, B.M. (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98, 115-124. doi:10.1016/S0092-8674(00)80611-X

[6]   Wende, A.R., Schaeffer, P.J., Parker, G.J., Zechner, C., Han, D.H., Chen, M.M., Hancock, C.R., Lehman, J.J., Huss, J.M., McClain, D.A., Holloszy, J.O. and Kelly, D.P. (2007) A role for the transcriptional coactivator PGC1alpha in muscle refueling. The Journal of Biological Chemistry, 282, 36642-36651 doi:10.1074/jbc.M707006200

[7]   Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A. and Popov, K.M. (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochemical Journal, 329, 191196.

[8]   Sugden, M.C. and Holness, M.J. (2003) Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. American Journal of Physiology—Endocrinology and Metabolism, 284, E855-E862.

[9]   Irrcher, I., Adhihetty, P.J., Sheehan, T., Joseph, A.M. and Hood, D.A. (2003) PPARgamma coactivator-1alpha expression during thyroid hormone and contractile activityinduced mitochondrial adaptations. American Journal of Physiology—Cell Physiology, 284, C1669-C1677.

[10]   Irrcher, I., Ljubicic, V., Kirwan, A.F. and Hood, D.A. (2008) AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells. PLoS One, 3, e3614. doi:10.1371/journal.pone.0003614

[11]   Polekhina, G., Gupta, A., Van Denderen, B.J., Feil, S.C., Kemp, B.E., Stapleton, D. and Parker, M.W. (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure, 13, 1453-1462. doi:10.1016/j.str.2005.07.008

[12]   Wojtaszewski, J.F., J?rgensen, S.B., Hellsten, Y., Hardie, D.G. and Richter, E.A. (2002) Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in rat skeletal muscle. Diabetes, 51, 284-292. doi:10.2337/diabetes.51.2.284

[13]   Wojtaszewski, J.F., MacDonald, C., Nielsen, J.N, Hellsten, Y., Hardie, D.G., Kemp, B.E., Kiens, B. and Richter, E.A. (2003) Regulation of 5’AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. American Journal of Physiology— Endocrinology and Metabolism, 284, E813-E822.

[14]   McBride, A. and Hardie, D.G. (2009) AMP-activated protein kinase—A sensor of glycogen as well as AMP and ATP. Acta physiologica (Oxford, England), 196, 99113. doi:10.1111/j.1748-1716.2009.01975.x

[15]   Pilegaard, H., Keller, C., Steensberg, A., Helge, J., Pedersen, B.K., Saltin, B. and Neufer, P.D. (2002) Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes. The Journal of Physiology, 541, 261-271. doi:10.1113/jphysiol.2002.016832

[16]   Gollnick, P.D., Piehl, K. and Saltin, B. (1974) Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. The Journal of Physiology, 241, 45-57.

[17]   Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E. and Wolfe, R.R. (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. American Journal of Physiology, 265, E380-E391.

[18]   McCartney, N., Spriet, L.L., Heigenhauser, G.F., Kowalchuk, J.M., Sutton, J.R. and Jones, N.L. (1986) Muscle power and metabolism in maximal intermittent exercise. Journal of Applied Physiology, 60, 1164-1169.

[19]   Newsholme, E.A. and Start, C. (1972) Regulation in Metabolism. Wiley Interscience, New York.

[20]   Chasiotis, D., Hultman, E. and Sahlin, K. (1983) Acidotic depression of cyclic AMP accumulation and phosphorylase b to a transformation in skeletal muscle of man. Journal of Applied Physiology, 335, 197-204.

[21]   Sairyo, K., Ikata, T., Takai, H. and Iwanaga, K. (1993) Effect of active recovery on intracellular pH following muscle contraction, a 31P-MRS study. The Annals of Physiological Anthropology, 12, 173-179. doi:10.2114/ahs1983.12.173

[22]   Shiose, K., Tobina, T., Higaki, Y., Kiyonaga, A. and Tanaka, H. (2011) An effective high-intensity intermittent exercise protocol for decreasing skeletal muscle glycogen. Japanese Journal of Physical Fitness and Sports Medicine, 60, 493-502. doi:10.7600/jspfsm.60.493

[23]   Little, J.P., Safdar, A., Wilkin, G.P., Tarnopolsky, M.A. and Gibala, M.J. (2010) A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: Potential mechanisms. Journal of Physiology, 588, 1011-1022. doi:10.1113/jphysiol.2009.181743

[24]   Astrand, P.O. and Rodahl, K. (1986) Textbook of work physiology: Physiological bases of exercise. 3rd Edition, McGraw-Hill, New York. doi:10.2310/6640.2004.00030

[25]   Whaley, M.H., Brubaker, P.H. and Otto, R.M., et al. (2006) ACSM’s Guidelines for Exercise Testing and Prescription. 7th Edition, Lippincott Williams & Wilkins, Baltimore.

[26]   Tobina, T., Nakashima, H., Mori, S., Abe, M., Kumahara, H., Yoshimura, E., Nishida, Y., Kiyonaga, A., Shono, N. and Tanaka, H. (2009) The utilization of a biopsy needle to obtain small muscle tissue specimens to analyze the gene and protein expression. Journal of Surgical Research, 154, 252-257. doi:10.1016/j.jss.2008.07.011

[27]   Higaki, Y., Wojtaszewski, J.F., Hirshman, M.F., Withers, D., Towery, H., White, M.F. and Goodyear, L.J. (1999) Insulin receptor substrate-2 is not necessary for insulinand exercise-stimulated glucose transport in skeletal muscle. The Journal of Biological Chemistry, 274, 2079120795. doi:10.1074/jbc.274.30.20791

[28]   Wang, L., Psilander, N., Tonkonogi, M., Ding, S. and Sahlin, K. (2009) Similar expression of oxidative genes after interval and continuous exercise. Medicine & Science in Sports & Exercise, 41, 2136-2144. doi:10.1249/MSS.0b013e3181abc1ec

[29]   Wang, L. and Sahlin, K. (2012) The effect of continuous and interval exercise on PGC-1α and PDK4 mRNA in type I and type II fibres of human skeletal muscle. Acta physiologica (Oxford, England), 204, 525-532. doi:10.1111/j.1748-1716.2011.02354.x

[30]   Akimoto, T., Pohnert, S., Li, P., Zhang, M., Gumbs, C., Rosenberg, P.B., Williams, R.S. and Yan, Z. (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. The Journal of Biological Chemistry, 280, 19587-19593. doi:10.1074/jbc.M408862200

[31]   Ojuka, E.O, Jones, T.E., Han, D., Chen, M. and Holloszy, J.O. (2003) Raising Ca2+ in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle. The FASEB Journal, 17, 675-681. doi:10.1096/fj.02-0951com

[32]   Miura, S., Kawanaka, K., Kai, Y., Tamura, M., Goto, M., Shiuchi, T., Minokoshi, Y. and Ezaki, O. (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1alpha) mRNA in response to exercise is mediated by beta-adrenergic receptor activation. Endocrinology, 148, 3441-3448. doi:10.1210/en.2006-1646

[33]   Mathai, A.S., Bonen, A., Benton, C.R., Robinson, D.L. and Graham, T.E. (2008) Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle. Journal of Applied Physiology, 105, 1098-1105. doi:10.1152/japplphysiol.00847.2007

[34]   Kiilerich, K., Gudmundsson, M., Birk, J.B, Lundby, C., Taudorf, S., Plomgaard, P., Saltin, B., Pedersen, P.A., Wojtaszewski, J.F. and Pilegaard, H. (2010) Low muscle glycogen and elevated plasma free fatty acid modify but do not prevent exercise-induced PDH activation in human skeletal muscle. Diabetes, 59, 26-32. doi:10.2337/db09-1032

[35]   Wu, P., Inskeep, K., Bowker-Kinley, M.M., Popov, K.M. and Harris, R.A. (1999) Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes, 48, 1593-1599. doi:10.2337/diabetes.48.8.1593

[36]   Spriet, L.L., Tunstall, R.J., Watt, M.J., Mehan, K.A., Hargreaves, M. and Cameron-Smith, D. (2004) Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting. Journal of Applied Physiology, 96, 2082-2087. doi:10.1152/japplphysiol.01318.2003

[37]   Cluberton, L.J., McGee, S.L., Murphy, R.M. and Hargreaves, M. (2005) Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. Journal of Applied Physiology, 99, 1359-1363. doi:10.1152/japplphysiol.00197.2005

[38]   Handschin, C. and Spiegelman, B.M. (2008) The role of exercise and PGC1alpha in inflammation and chronic disease. Nature, 454, 463-469. doi:10.1038/nature07206