ABC  Vol.2 No.4 , November 2012
Measuring free tissue sulfide
Abstract: Hydrogen sulfide is synthesized endogenously in mammals and has been shown to have both physiological and pathological functions. So far there has been little agreement as to the actual levels of endogenous sulfide under physiological or pathological conditions; this is partly due to the complexity involved in measuring free sulfides due to H2S volatility, oxidation, reactivity and the presence of bound labile sulfur in tissues. In this report we describe a method of measuring free tissue sulfides using a zinc sulfide precipitation and wash method. It is an indirect method that measures the sulfide difference between samples prepared at pH 9 and pH 6, assuming that at pH 9 free sulfides would be retained in solution, while at pH 6 free sulfides would volatilize during sample preparation. Using this approach we were able to measure appreciable amounts of free sulfides in mouse: lung, pancreas, liver and kidney at 0.036 + 0.006, 0.082 + 0.009, 0.215 + 0.016 and 0.323 + 0.031 nmole per mg of tissue respectively (n = 6).
Cite this paper: Ang, A. , Konigstorfer, A. , Giles, G. and Bhatia, M. (2012) Measuring free tissue sulfide. Advances in Biological Chemistry, 2, 360-365. doi: 10.4236/abc.2012.24044.

[1]   Rong, W., Kimura, H. and Grundy, D. (2011) The neurophysiology of hydrogen sulfide. Inflammation & Allergy-Drug Targets, 10, 109-117. doi:10.2174/187152811794776295

[2]   Kaneko, Y., Kimura, Y., Kimura, H. and Niki, I. (2006) L-cysteine inhibits insulin release from the pancreatic beta-cell: Possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes, 55, 1391-1397. doi:10.2174/187152811794776295

[3]   Bucci, M. and Cirino, G. (2011) Hydrogen sulphide in heart and systemic circulation. Inflammation & Allergy-Drug Targets, 10, 103-108. doi:10.2174/187152811794776204

[4]   Hegde, A. and Bhatia, M. (2011) Hydrogen sulfide in inflammation: Friend or foe? Inflammation & Allergy- Drug Targets, 10, 118-122.

[5]   Nishimura, S., Fukushima, O., Ishikura, H., Takahashi, T., Matsunami, M., Tsujiuchi, T., Sekiguchi, F., Naruse, M., Kamanaka, Y. and Kawabata, A. (2009) Hydrogen sulfide as a novel mediator for pancreatic pain in rodents. Gut, 58, 762-770. doi:10.1136/gut.2008.151910

[6]   Hershey, J.P., Plese, T. and Miller, F.J. (1988) The pK1 for the dissociation of H2S in various ionic media. Geochimica et Cosmochimica Acta, 52, 2047-2051. doi:10.1016/0016-7037(88)90183-4

[7]   Lindell, H., J?ppinen, P. and Savolainen, H. (1988) Determination of sulphide in blood with an ion-selective electrode by pre-concentration of trapped sulphide in sodium hydroxide solution. Analyst, 113, 839-840. doi:10.1039/an9881300839

[8]   Goodwin, L.R., Francom, D., Dieken, F.P., Taylor, J.D., Warenycia, N.W., Reiffenstein, R.J. and Dowling, G. (1989) Determination of sulfide in brain tissue by gas dialysis/ion chromatography: post-mortem studies and two case reports. Journal of Analytical Toxicology, 13, 105- 109.

[9]   Ogasawara, Y., Ishii, K., Togawa, T. and Tanabe, S. (1993) Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Analytical Biochemistry, 215, 73-81. doi:10.1006/abio.1993.1556

[10]   Furne, J., Saeed, A. and Levitt, M.D. (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology: Regulatory, Integrative and Comparative Physiolog, 295, R1479-R1485. doi:10.1152/ajpregu.90566.2008

[11]   Levitt, M.D., Abdel-Rehim, M.S. and Furne, J. (2011) Free and acid-labile hydrogen sulfide concentrations in mouse tissues: Anomalously high free hydrogen sulfide in aortic tissue. Antioxidants & Redox Signaling, 15, 373- 378. doi:10.1089/ars.2010.3525

[12]   Teng, X., Scott Isbell, T., Crawford, J.H., Bosworth, C.A., Giles, G.I., Koenitzer, J.R., Lancaster, J.R., Doeller, J.E., W., Kraus, D. and Patel, R. (2008) Novel method for measuring S-nitrosothiols using hydrogen sulfide. Methods in Enzymology, 441, 161-172. doi:10.1016/S0076-6879(08)01209-3

[13]   Ubuka, T. (2002) Assay methods and biological roles of labile sulfur in animal tissues. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 781, 227-249. doi:10.1016/S1570-0232(02)00623-2

[14]   Tangerman, A. (2009) Measurement and biological sig- nificance of the volatile sulfur compounds hydrogen sulfide, methanethiol and dimethyl sulfide in various biological matrices. Journal of Chromatography B Analytical Technologies in the Biomedical and Life Sciences, 877, 3366-3377. doi:10.1016/j.jchromb.2009.05.026

[15]   Doeller, J.E., Isbell, T.S., Benavides, G., Koenitzer, J., Patel, H., Patel, R.P., Lancaster Jr., J.R., Darley-Usmar, V.M. and Kraus, D.W. (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Analytical Biochemistry, 341, 40-51. doi:10.1016/j.ab.2005.03.024

[16]   Whitfield, N.L., Kreimier, E.L., Verdial, F.C., Skovgaard, N. and Olson, K.R. (2008) Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1930-R1937. doi:10.1152/ajpregu.00025.2008

[17]   Shen, X., Pattillo, C.B., Pardue, S., Bir, S.C., Wang, R. and Kevil, C.G. (2011) Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radical Biology and Medicine, 50, 1021-1031. doi:10.1016/j.freeradbiomed.2011.01.025

[18]   Fogo, J.K. and Popowsky, M. (1949) Spectrophotometric determination of hydrogen sulfide. Analytical Chemistry, 21, 732-734. doi:10.1021/ac60030a028

[19]   Fisher, E. (1883) Bildung von Methylenblau als Reaction auf Schwefelwasserstoff. Chem Ber, 26, 2234-2236.

[20]   Stipanuk, M.H. and Beck, P.W. (1982) Characterization of the enzymatic capacity for cysteine desulphydration in the liver and kidney of the rat. The Biochemical Journal, 206, 267-277.

[21]   Zhao, W., Zhang, J., Lu, Y. and Wang, R. (2001) The vasorelaxant effect of H2S as a novel endogenous KATP channel opener. European Molecular Biology Organization, 20, 6008-6016.

[22]   Bhatia, M., Wong, F.L., Fu, D., Lau, H.Y., Moochhala, S.M. and Moore, P.K. (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. Journal of Federation of American Societies for Experimental Biology, 19, 623-625.

[23]   Ekundi-Valentim, E., Santos, K.T., Camargo, E.A., Denadai-Souza, A., Teixeira, S.A., Zanoni, C.I., Grant, A.D., Wallace, J., Muscará, M.N. and Costa, SK. (2010) Dif- fering effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. British Journal of Pharmacology, 159, 1463-1474. doi:10.1111/j.1476-5381.2010.00640.x

[24]   Siegel, L.M. (1965) A direct microdetermination for sulfide. Analytical Biochemistry, 11, 126-132. doi:10.1016/0003-2697(65)90051-5

[25]   Gilboa-Garber, N. (1971) Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures. Analytical Biochemistry, 43, 129-133. doi:10.1016/0003-2697(71)90116-3

[26]   Pomeroy, R.P. (1954) Auxiliary pretreatment by zinc acetate in sulfide analyses. Analytical Chemistry, 26, 571- 572. doi:10.1021/ac60087a047

[27]   Kolluru, G.K., Shen, X. and Kevil, C.G. (2011) Detection of hydrogen sulfide in biological samples: Current and future. Expert Review of Clinical Pharmacology, 4, 9-12. doi:10.1586/ecp.10.132

[28]   Siegel, L.M., Murphy, M.J. and Kamin, H. (1973) Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. Journal of Biological Chemistry, 248, 251-264.

[29]   Suhara, K., Takemori, S., Katagiri, M., Wada, K. and Kobayashi, H. (1975) Estimation of labile sulfide in iron-sulfur proteins. Analytical Biochemistry, 68, 632-636. doi:10.1016/0003-2697(75)90659-4

[30]   Whiteman, M., Li, L., Rose, P., Tan, C.H., Parkinson, D.B. and Moore, P.K. (2010) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxidants & Redox Signaling, 12, 1147-1154. doi:10.1089/ars.2009.2899