OJAB  Vol.1 No.3 , November 2012
A Microfluidic Reactor for Energy Applications

Miniature microbial fuel cells have recently drawn lots of attention as portable power generation devices due to their short startup time and environmentally-friendly process which could be used for powering small integrated biosensors. We designed and fabricated a microbial fuel cell in a microfluidic platform. The device was made in polydimethylsiloxane with a volume of 4 μL and consisted of two carbon cloth electrodes and proton exchange membrane. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacterial strain and inoculated into the anode chamber. Ferricyanide was used as the catholyte and pumped into the cathode chamber at a constant flow rate during the experiment. The mi- niature microbial fuel cell generated a maximum current of 2.59 μA and had a significantly short startup time.

Cite this paper
Wagner, L. , Yang, J. , Ghobadian, S. , Montazami, R. and Hashemi, N. (2012) A Microfluidic Reactor for Energy Applications. Open Journal of Applied Biosensor, 1, 21-25. doi: 10.4236/ojab.2012.13003.
[1]   I. Ivanov, T. Vidakovic-Koch and K. Sundmacher, “Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling,” Energies, Vol. 3, No. 4, 2010, pp. 803-846. doi:10.3390/en3040803

[2]   N. Hashemi, J. S. Erickson, J. P. Golden, K. M. Jackson, and F. S. Ligler, “Microflow Cytometer for Optical Analysis of Phytoplankton,” Biosensors and Bioelectronics, Vol. 26, No. 11, 2011, pp. 4263-4269. doi:10.1016/j.bios.2011.03.042

[3]   N. Hashemi, J. S. Erickson, J. P. Golden and F. S. Ligler, “Optofluidic Characterization of Marine Algae Using a Microflow Cytometer,” Biomicrofluidics, Vol. 5, 2011, Article ID: 032009. doi:10.1063/1.3608136

[4]   Y. Lei, W. Chen and A. Mulchandani, “Microbial Biosensors,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 200-210. doi:10.1016/j.aca.2005.11.065

[5]   S. C. Barton, J. Gallaway and P. Atanassov, “Enzymatic Biofuel Cells for Implantable and Microscale Devices,” Chemical Reviews, Vol. 104, No. 10, 2004, pp. 4867- 4886. doi:10.1021/cr020719k

[6]   S. Boland and D. Leech, “A Glucose/Oxygen Enzymatic Fuel Cell Based on Redox Polymer and Enzyme Immobilisation at Highly-Ordered Macroporous Gold Electrodes,” Analyst, Vol. 137, 2012, pp. 113-117. doi:10.1039/c1an15537g

[7]   P. Jenkins, S. Tuurala, A. Vaari, M. Valkiainen, M. Smolander and D. Leech, “A Mediated Glucose/Oxygen Enzymatic Fuel Cell Based on Printed Carbon Inks Containing Aldose Dehydrogenase and Laccase as Anode and Cathode,” Enzyme and Microbial Technology, Vol. 50, No. 3, 2012, pp. 181-187. doi:10.1016/j.enzmictec.2011.12.002

[8]   L. Su, W. Jia, C. Hou and Y. Lei, “Microbial Biosensors: A Review,” Biosensors and Bioelectronics, Vol. 26, No. 5, 2011, pp. 1788-1799. doi:10.1016/j.bios.2010.09.005

[9]   S. d’Souza, “Microbial Biosensors,” Biosensors and Bioelectronics, Vol. 16, No. 6, 2001, pp. 337-353. doi:10.1016/S0956-5663(01)00125-7

[10]   I. L. Medintz and J. R. Deschamps, “Maltose-Binding Protein: A Versatile Platform for Prototyping Biosensing,” Current Opinion in Biotechnology, Vol. 17, No. 1, 2006, pp. 17-27. doi:10.1016/j.copbio.2006.01.002

[11]   H. H. Park, W. K. Lim and H. J. Shin, “In Vitro Binding of Purified NahR Regulatory Protein with Promoter Psal,” Biochimica et Biophysica Acta (BBA)-General Subjects, Vol. 1725, No. 2, 2005, pp. 247-255. doi:10.1016/j.bbagen.2005.05.015

[12]   E. R. Choban, L. J. Markoski, A. Wieckowski and P. J. A. Kenis, “Microfluidic Fuel Cell Based on Laminar Flow,” Journal of Power Sources, Vol. 128, No. 1, 2004, pp. 54- 60. doi:10.1016/j.jpowsour.2003.11.052

[13]   R. S. Jayashree, L. Gancs, E. R. Choban, A. Primak, D. Natarajan, L. J. Markoski and P. J. A. Kenis, “Air-Breathing Laminar Flow-Based Microfluidic Fuel Cell,” Journal of the American Chemical Society, Vol. 127, No. 48, 2005, pp. 16758-16759. doi:10.1021/ja054599k

[14]   K. Rabaey, G. Lissens, S. D. Siciliano and W. Verstraete, “A Microbial Fuel Cell Capable of Converting Glucose to Electricity at High Rate and Efficiency,” Biotechnology letters, Vol. 25, No. 18, 2003, pp. 1531-1535. doi:10.1023/A:1025484009367

[15]   F. Qian, M. Baum, Q. Gu and D. E. Morse, “A 1.5 μL Microbial Fuel Cell for On-Chip Bioelectricity Generation,” Lab on a Chip, Vol. 9, No. 21, 2009, pp. 3076-3081. doi:10.1039/b910586g

[16]   F. Qian, Z. He, M. P. Thelen and Y. Li, “A Microfluidic Microbial Fuel Cell Fabricated by Soft Lithography,” Bioresource Technology, Vol. 102, No. 10, 2011, pp. 5836-5840. doi:10.1016/j.biortech.2011.02.095

[17]   B. R. Ringeisen, E. Henderson, P. K. Wu, J. Pietron, R. Ray, B. Little, J. C. Biffinger and J. M. Jones-Meehan, “High Power Density from a Miniature Microbial Fuel Cell Using Shewanella oneidensis DSP10,” Environmental Science & Technology, Vol. 40, No. 8, 2006, pp. 2629-2634. doi:10.1021/es052254w

[18]   Z. He, N. Wagner, S. D. Minteer and L. T. Angenent, “An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of the Internal Resistance by Impedance Spectroscopy,” Environmental Science & Technology, Vol. 40, No. 17, 2006, pp. 5212-5217. doi:10.1021/es060394f

[19]   S. B. Velasquez-Orta, T. P. Curtis and B. E. Logan, “Energy from Algae Using Microbial Fuel Cells,” Biotechnology and Bioengineering, Vol. 103, No. 6, 2009, pp. 1068-1076. doi:10.1002/bit.22346

[20]   Z. Ren, T. E. Ward and J. M. Regan, “Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture,” Environmental Science & Techno logy, Vol. 41, No. 13, 2007, pp. 4781-4786. doi:10.1021/es070577h