ABC  Vol.2 No.4 , November 2012
Insights on the structural characteristics of NDM-1: The journey so far
New Delhi metallo-β-lactamase (NDM-1) has created a medical storm ever since it was first reported; as it is active on virtually all clinically used β-lactam antibiotics. NDM-1 rampancy worldwide is now considered a nightmare scenario, particularly due to its rapid dissemination. An underlying theme in the majority of recent studies is structural characterization as knowledge of the three-dimensional structure of NDM-1 shall help find connections between its structure and function. Moreover, structural details are even critical in order to reveal the resistance mecha- nism to β-lactam antibiotics. In this perspective, we review structural characteristics of NDM-1 that have been delineated since its first report. We anticipate that these structure-function connections made by its characterization shall further serve as future guidelines for elucidating pathways towards de novo design of functional inhibitors.

Cite this paper
Saini, A. and Bansal, R. (2012) Insights on the structural characteristics of NDM-1: The journey so far. Advances in Biological Chemistry, 2, 323-334. doi: 10.4236/abc.2012.24040.
[1]   Levy, S.B. and Marshall, B. (2004) Antibiotic resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, S122-S129. doi:10.1038/nm1145

[2]   Yong, D., Toleman, M.A., Giske, C.G., Cho, S., Hyun, S., Sundman, K., Lee, K. and Walsh, T.R. (2009) Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in klebsiella pneumonia sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53, 5046-5054. doi:10.1128/AAC.00774-09

[3]   Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., Krishnan, P., Kumar, A.V., Maharajan, S., Mushtaq, S., Noorie, T., Paterson, D.L., Pearson, A., Perry, C., Pike, R., Rao, B., Ray, U., Sarma, J.B., Sharma, M., Sheridan, E., Thirunarayan, M.A., Turton, J., Upadhay, S., Warner, M., Welfare, W., Livermore, D.M. and Woodford, N. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A mole

[4]   Rolain, J.M., Parola, P. and Cornaglia, G. (2010) New Delhi metallo-beta-lactamase (NDM-1): Towards a new pandemia? Clinical Microbiology and Infection, 12, 1699- 1701. doi:10.1111/j.1469-0691.2010.03385.x

[5]   Bush, K. (2010) Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Current Opinion in Microbiology, 13, 558-564. doi:10.1016/j.mib.2010.09.006

[6]   Huo, T.I. (2010) The first case of multidrug-resistant NDM-1 harboring Enterobacteriaceae in Taiwan: Here comes the superbacteria! Journal of the Chinese Medical Association, 73, 557-558. doi:10.1016/S1726-4901(10)70121-0

[7]   Moellering Jr., R.C. (2010) NDM-1-A cause for world-wide concern. The New England Journal of Medicine, 363, 2377-2379. doi:10.1056/NEJMp1011715

[8]   Poirei, L., Lagrutta, E., Taylor, P., Pham, J. and Nord- mann, P. (2010) Emergence of metallo-β-lactamase NDM-1 producing multidrug resistant Escherichia coli in Australia. Antimicrobial Agents and Chemotherapy, 54, 4914-4916. doi:10.1128/AAC.00878-10

[9]   Poirel, L., Al Maskari, Z., Al Rashdi, F., Bernabeu, S. and Nordmann, P. (2011) NDM-1 producing Klebsiella pneumonia isolated in the Sultanate of Oman. The Jour- nal of Antimicrobial Chemotherapy, 66, 304-306. doi:10.1093/jac/dkq428

[10]   Poirel, L., Revathi, G., Bernabeau, S. and Nordamnn, P. (2011) Detection of NDM-1 producing Kleibsiella pneu-monia in Kenya. Antimicrobial Agents and Chemotherapy, 55, 934-936. doi:10.1128/AAC.01247-10

[11]   Poirel, L., Ros, A., Crricajo, A., Berthelot, P., Pozzetto, B., Bernabeu, S. and Nordmann, P. (2011) Extremely drug-resistant Citrobacter freundii identified in a patient returning from India and producing NDM-1 and other carbapenemases. Antimicrobial Agents and Chemotherapy, 55, 447-448. doi:10.1128/AAC.01305-10

[12]   Samuelsen, O., Thilesen, C.M., Heggelund, L., Vada, A.N., Kummel, A. and Sundsfjord, A. (2011) Identifica- tion of NDM-1 producing Enterobacteriaceae in Norway. The Journal of Antimicrobial Chemotherapy, 66, 670- 672. doi:10.1093/jac/dkq483

[13]   Walsh, T.R. (2010) Emerging carbapenemases: A global perspective. International Journal of Antimicrobal Agents, 36, S8-S14. doi:10.1016/S0924-8579(10)70004-2

[14]   Zhang, X. (2010) Human in check: New threat from superbugs equipped with NDM-1. Protein Cell, 1, 1051- 1052. doi:10.1007/s13238-010-0134-7

[15]   Zheng, B., Tan, S., Gao, J., Han, H., Liu, J., Lu, G., Liu, D., Yi, Y., Zhu, B. and Gao, G.F. (2011) An unexpected similarity between antibiotic-resistant NDM-1 and beta- lactamase II from Erythrobacter litoralis. Protein Cell, 2, 250-258. doi:10.1007/s13238-011-1027-0

[16]   Llarrull, L.I., Testero, S.A., Fisher, J.F. and Mobashery, S. (2010) The future of β-lactams. Current Opinion in Mi- crobiology, 13, 551-557. doi:10.1016/j.mib.2010.09.008

[17]   Draw, S.M. and Bonomo, R.A. (2010) Three decades of beta-lactamase inhibitors. Clinical Microbiology Reviews, 23, 160-201. doi:10.1128/CMR.00037-09

[18]   Wilke, M.S., Lovering, A.L. and Strynadka, N.C. (2005) Beta-lactam antibiotic resistance: A current structural perspective. Current Opinion in Microbiology, 8, 525- 533. doi:10.1016/j.mib.2005.08.016

[19]   Bebrone, C. (2007) Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochemical Pharmacology, 74, 1686-1701. doi:10.1016/j.bcp.2007.05.021

[20]   Nair, D. and Rawat, D. (2010) Extended-spectrum β- lactamases in Gram Negative Bacteria. Journal of Global Infectious Diseases, 2, 263-274. doi:10.4103/0974-777X.68531

[21]   Wang, J.-F. and Chou, K.C. (2011) Insights from modeling the 3D structure of New Delhi metallo-β-lactamase and its binding interactions with antibiotic drugs. PLoS ONE, 6, e18414. doi:10.1371/journal.pone.0018414

[22]   Matagne, A., Lamotte-Brasseur, J. and Frere, J.M. (1998) Catalytic properties of class A-lactamases: Efficiency and diversity. The Biochemical Journal, 330, 581-598.

[23]   Abraham, E.P. and Chain, E. (1940) An enzyme from bacteria able to destroy penicillin. Nature, 146, 837-837. doi:10.1038/146837a0

[24]   Turner, P.J. (2005) Extended-spectrum-lactamases. Clinical Infectious Diseases, 41, S273-S275. doi:10.1086/430789

[25]   Ambler, R.P. (1980) The structure of beta-lactamases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 289, 321-331. doi:10.1098/rstb.1980.0049

[26]   Gupta, V. (2007) An update on newer-lactamases. Indian Journal of Medical Research, 126, 417-427.

[27]   Dhillon, R. and Clark, J. (2011) ESBLs: A clear and present danger? Critical Care Research and Practice, 2012, 625170-625181.

[28]   Kanj, S.S. and Kanafani, Z.A. (2011) Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clinic Proceedings, 86, 250-259. doi:10.4065/mcp.2010.0674

[29]   Ambler, R.P., Coulson, A.F., Frere, J.M., Ghuysen, J.M., Joris, B., Forsman, M., Levesque, R.C., Tiraby, G. and Waley, S.G. (1991) A standard numbering scheme for the class A beta lactamases. The Biochemical Journal, 276, 269-270.

[30]   Bush, K., Jacoby, G.A. and Medeiros, A.A. (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39, 1211-1233. doi:10.1128/AAC.39.6.1211

[31]   Rasmussen, B.A. and Bush, K. (1997) Carbapenem-hy- drolyzing betalactamases. Antimicrobial Agents and Chemotherapy, 41, 223-232.

[32]   Zhang, H.M. and Hao, Q. (2011) Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. The FASEB Journal, 25, 2574-2582. doi:10.1096/fj.11-184036

[33]   Lee, K., Yum, J.H., Yong, D., Lee, H.M., Kim, H.D., Docquier, J.D., Rossolini, G.M. and Chong, Y. (2005) Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrobial Agents and Chemotherapy, 49, 4485-4491. doi:10.1128/AAC.49.11.4485-4491.2005

[34]   Neuwald, A.F., Liu, J.S., Lipman, D.J. and Lawrence, C.E. (1997) Extracting protein alignment models from the sequence database. Nucleic Acids Research, 25, 1665- 1677. doi:10.1093/nar/25.9.1665

[35]   Daiyasu, H., Osaka, K., Ishino, Y. and Toh, H. (2001) Expansion of the zinc metallohydrolase family of the beta-lactamase fold. FEBS Letters, 503, 1-6. doi:10.1016/S0014-5793(01)02686-2

[36]   Aravind, L. (1999) An evolutionary classification of the metallo-β-lactamase fold proteins. Silico Biology, 1, 69- 91.

[37]   Costello, A.L., Sharma, N.P., Yang, K.W., Crowder, M.W. and Tierney, D.L. (2006) X-ray absorption spectroscopy of the zinc binding sites in the class B2 met- allo-β-lactamase ImiS from Aeromonas veronii bv. sobria. Biochemistry, 5, 13650-13658. doi:10.1021/bi061547e

[38]   Li, Y., Chooi, Y.H., Sheng, Y., Valentine, J.S. and Tang, Y. (2011) Comparative characterization of fungal an- thraxcenone and naphthacenedione biosynthetic pathways reveals an α-hydroxylation-dependent claisen-like cycli- zation catalyzed by a dimanganese thioesterase. Journal of the American Chemical Society, 133, 15773-15785. doi:10.1021/ja206906d

[39]   Llarrull, L.I., Tioni, M.F., Kowalski, J., Bennett, B. and Vila, A.J. (2007) Evidence for a dinuclear active site in the metallo-β-lactamase BcII with substoichiometric Co (II). A new model for metal uptake. The Journal of Biological Chemistry, 282, 30586-30595. doi:10.1074/jbc.M704613200

[40]   Gomes, C.M., Giuffre, A., Forte, E., Vicente, J.B., Saraiva, L.M., Brunori, M. and Teixeira, M. (2002) A novel type of nitricoxide reductase. Escherichia coli flavorubredoxin. The Journal of Biological Chemistry, 277, 25273-25276. doi:10.1074/jbc.M203886200

[41]   Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J.M. and Dideberg, O. (1995) The 3-D structure of a zinc metallo-β-lactamas from Bacillus cereus reveals a new type of protein fold. The EMBO Journal, 14, 4914-4921.

[42]   Kim, Y., Tesar, C., Mire, J., Jedrzejczak, R.., Binkowski, A., Babnigg, G., Saccgettini, J. and Joachimiak A. (2011) Structure of apo- and mono-metalated forms of NDM-1: A highly potent carbanepem-hydrolyzing metallo-β-lac- tamase. PLoS ONE, 6, e24621. doi:10.1371/journal.pone.0024621

[43]   Peirano, G., Schreckenberger, P.C. and Pitout, J.D.D. (2011) Characteristics of NDM-1 producing Escherichia coli isolates that belong to the successful and virulent clone ST131. Antimicrobial Agents and Chemotherapy, 55, 2986-2988. doi:10.1128/AAC.01763-10

[44]   King, D. and Strynadka, N. (2011) Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Science, 20, 1484-1491. doi:10.1002/pro.697

[45]   King, D.T., Worrall, L.J., Gruninger, R. and Strynadka, N. (2012) New Delhi metallo-β-lactamase: Structural in- sights into β-lactam recognition and inhibition. Journal of the American Chemical Society, 134, 11362-11365. doi:10.1021/ja303579d

[46]   Green, V.L., Verma, A., Owens, R.J., Phillips, S.E. and Carr, S.B. (2011) Structure of New Delhi metallo-β-lac- tamase 1 (NDM-1). Acta Crystallogr, 67, 1160.

[47]   Guo, Y., Wang, J., Niu, G., Shui, W., Sun, Y., Zhou, H., Zhang, Y., Yang, C., Lou, Z. and Rao, Z. (2011) A struc- tural view of the antibiotic degradation enzyme NDM-1 from a superbug. Protein Cell, 2, 384-394. doi:10.1007/s13238-011-1055-9

[48]   Thomas, P.W., Zheng, M., Wu, S., Guo, H., Liu, D., Xu, D. and Fast, W. (2011) Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry, 50, 10102- 10113. doi:10.1021/bi201449r

[49]   Toleman, M.A., Bennett, P.M. and Walsh, T.R. (2006) Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class I integrons. The Journal of Antimicrobial Chemotherapy, 58, 1-6. doi:10.1093/jac/dkl204

[50]   Toleman, M.A., Bennett, P.M. and Walsh, T.R. (2006) ISCR elements: Novel gene-capturing systems of the 21st century? Microbiology and Molecular Biology Review, 70, 296-316. doi:10.1128/MMBR.00048-05

[51]   Heinz, U. and Adolph, H.W. (2004) Metallo-β-lactamases: Two binding sites for one catalytic metal ion? Cellular and Molecular Life Sciences, 61, 2827-2839. doi:10.1007/s00018-004-4214-9

[52]   Orellano, E.G., Girardini, J.E., Cricco, J.A., Ceccarelli, E.A. and Vila, A.J. (1998) Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry, 37, 10173-10180. doi:10.1021/bi980309j

[53]   Liang, Z., Li, L., Wang, Y., Chen, L., Kong, X., Hong, Y., Lan, L., Zheng, M., Yang, C.G., Hong, S.X., Luo, C., Li, K.K., Chen, K. and Jiang, H. (2011) Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One, 6, e23606. doi:10.1371/journal.pone.0023606

[54]   Randhawa, V. and Jamwal, R. (2011) Molecular modelling and virtual screening studies of NDM-1 Beta-lac- tamase for identification of a series of potent inhibitors. International Research Journal of Biochemistry and Bioinformatics, 1, 95-102.

[55]   Chou, K.C. and Zhang, C.T. (1995) Review: Prediction of protein structural classes. Critical Reviews in Bio- chemistry and Molecular Biology, 30, 275-349. doi:10.3109/10409239509083488

[56]   Moali, C., Anne, C., Lamotte-Brasseur, J., Groslambert, S., Devreese, B., Van Beeumen, J., Galleni, M. and Frère, J.M. (2003) Analysis of the importance of the metallo- beta-lactamase active site loop in substrate binding and catalysis. Chemistry and Biology, 10, 319-329. doi:10.1016/S1074-5521(03)00070-X

[57]   Yamaguchi, Y., Jin, W., Matsunaga, K., Ikemizu, S., Yamagata, Y., Wachino, J., Shibata, N., Arakawa, Y. and Kurosaki, H. (2007) Crystallographic investigation of the inhibition mode of a VIM-2 metallo-betalactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. Journal of Medicinal Chemistry, 50, 6647-6653. doi:10.1021/jm701031n

[58]   Sowmiya, M., Umashankar, V., Muthukumaran, S., Mad- havan, H.N. and Malathi, J. (2012) Studies on New Delhi metallo-beta-lactamse-1 producing Acinetobacter bauma- nnii isolated from donor swab in a tertiary eye care centre, India and structural analysis of its antibiotic binding interactions. Bioinformation, 8, 445-452. doi:10.6026/97320630008445

[59]   Gagupati, J., Mukkavali, S.V., Atiamula, S. and Siva Sai, K.S.R. (2011) In-silico modelling and docking studies of New Delhi beta-lactamase-1 (Superbug). International Journal of Engineering Science and Technology, 3, 2427- 2534.