Modified NSGA-II for a Bi-Objective Job Sequencing Problem

Show more

References

[1] W. J. Xia and Z. M. Wu, “An Effective Hybrid Optimization Approach for Multi-Objective Flexible Job-Shop Scheduling Problems,” Computers & Industrial Engineering, Vol. 48, No. 2, 2005, pp. 409-425.
doi:10.1016/j.cie.2005.01.018

[2] L.-N. Xing, Y.-W. Chen and K.-W. Yang, “Multi-Objective Flexible Job Shop Schedule: Design and Evaluation by Simulation Modeling,” Applied Soft Computing, Vol. 9, No. 1, 2009, pp. 362-376.
doi:10.1016/j.asoc.2008.04.013

[3] C. X. Miao, Y. Z. Zhang and Z. G. Cao, “Bounded Parallel-Batch Scheduling on Single and Multi Machines for Deteriorating Jobs,” Information Processing Letters, Vol. 111, No. 16, 2011, pp. 798-803.
doi:10.1016/j.ipl.2011.05.018

[4] J. Q. Li, Q. K. Pan and S. X. Xie, “An Effective Shuffled Frog-Leaping Algorithm for Multi-Objective Flexible Job Shop Scheduling Problems,” Applied Mathematics and Computation, Vol. 218, No. 18, 2012, pp. 9353-9371.
doi:10.1016/j.amc.2012.03.018

[5] G. H. Zhang, X. Y. Shao, P. G. Li and L. Gao, “An Effective Hybrid Particle Swarm Optimization Algorithm for Multi-Objective Flexible Job-Shop Scheduling Problem,” Computers & Industrial Engineering, Vol. 56, No. 4, 2009, pp. 1309-1318. doi:10.1016/j.cie.2008.07.021

[6] J.-Q. Li, Q.-K. Pan and Y.-C. Liang, “An Effective Hybrid Tabu Search Algorithm for Multi-Objective Flexible Job-Shop Scheduling Problems,” Computers & Industrial Engineering, Vol. 59, No. 4, 2010, pp. 647-662.
doi:10.1016/j.cie.2010.07.014

[7] J. Gao, L. Y. Sun and M. Gen, “A Hybrid Genetic and Variable Neighborhood Descent Algorithm for Flexible Job Shop Scheduling Problems,” Computers & Operations Research, Vol. 35, No. 9, 2008, pp. 2892-2907.
doi:10.1016/j.cor.2007.01.001

[8] A. Rahimi-Vahed and A. H. Mirzaei, “A Hybrid Multi-Objective Shuffled Frog-Leaping Algorithm for a Mixed-Model Assembly Line Sequencing Problem,” Computers & Industrial Engineering, Vol. 53, No. 4, 2007, pp. 642-666.
doi:10.1016/j.cie.2007.06.007

[9] A. R. Rahimi-Vahed, M. Rabbani, R. Tavakkoli-Moghaddam, S. A. Torabi and F. Jolai, “A Multi-Objective Scatter Search for a Mixed-Model Assembly Line Sequencing Problem,” Advanced Engineering Informatics, Vol. 21, No. 1, 2007, pp. 85-99. doi:10.1016/j.aei.2006.09.007

[10] J. C. Tay and N. B. Ho, “Evolving Dispatching Rules Using Genetic Programming for Solving Multi-Objective Flexible Job-Shop Problems,” Computers & Industrial Engineering, Vol. 54, No. 3, 2008, pp. 453-473.
doi:10.1016/j.cie.2007.08.008

[11] D. Y. Sha and H.-H. Lin, “A Multi-Objective PSO for Job-Shop Scheduling Problems,” Expert Systems with Applications, Vol. 37, No. 2, 2010, pp. 1065-1070.
doi:10.1016/j.eswa.2009.06.041

[12] D. C. Mattfeld and C. Bierwirth, “An Efficient Genetic Algorithm for Job Shop Scheduling with Tardiness Objectives,” European Journal of Operational Research, Vol. 155, No. 3, 2004, pp. 616-630.
doi:10.1016/S0377-2217(03)00016-X

[13] T. K. Varadharajan and C. Rajendran, “A Multi-Objective Simulated-Annealing Algorithm for Scheduling in Flowshops to Minimize the Makespan and Total Flowtime of Jobs,” European Journal of Operational Research, Vol. 167, No. 3, 2005, pp. 772-795.
doi:10.1016/j.ejor.2004.07.020

[14] B. Yagmahan and M. M. Yenisey, “A Multi-Objective ant Colony System Algorithm for Flow Shop Scheduling Problem,” Expert Systems with Applications, Vol. 37, No. 2, 2010, pp. 1361-1368.
doi:10.1016/j.eswa.2009.06.105

[15] J. Behnamian, S. M. T. Fatemi Ghomi and M. Zandieh, “A Multi-Phase Covering Pareto-Optimal Front Method to Multi-Objective Scheduling in a Realistic Hybrid Flowshop Using a Hybrid Metaheuristic,” Expert Systems with Applications, Vol. 36, No. 8, 2009, pp. 11057-11069.
doi:10.1016/j.eswa.2009.02.080

[16] T.-C. Chiang, H.-C. Cheng and L.-C. Fu, “NNMA: An Effective Memetic Algorithm for Solving Multiobjective Permutation Flow Shop Scheduling Problems,” Expert Systems with Applications, Vol. 38, No. 5, 2011, pp. 5986-5999. doi:10.1016/j.eswa.2010.11.022

[17] Z. Lian, “A United Search Particle Swarm Optimization Algorithm for Multiobjective Scheduling Problem,” Applied Mathematical Modelling, Vol. 34, No. 11, 2010, pp. 3518-3526. doi:10.1016/j.apm.2010.03.001

[18] R. Tavakkoli-Moghaddam, A. Rahimi-Vahed and A. H. Mirzaei, “A Hybrid Multi-Objective Immune Algorithm for a Flow Shop Scheduling Problem with Bi-Objectives: Weighted Mean Completion Time and Weighted Mean Tardiness,” Information Sciences, Vol. 177, No. 22, 2007, pp. 5072-5090. doi:10.1016/j.ins.2007.06.001

[19] M. M. Mazdeh, F. Zaerpour, A. Zareei and A. Hajinezhad, “Parallel Machines Scheduling to Minimize Job Tardiness and Machine Deteriorating Cost with Deteriorating Jobs,” Applied Mathematical Modelling, Vol. 34, No. 6, 2010, pp. 1498-1510. doi:10.1016/j.apm.2009.08.023

[20] H. F. Lewis and S. A. Slotnick, “Multi-Period Job Selection: Planning Workloads to Maximize Profit,” Computers & Operations Research, Vol. 29, No. 8, 2002, pp. 1081-1098.
doi:10.1016/S0305-0548(00)00105-2

[21] K. R. Baker and B. Keller, “Solving the Single-Machine Sequencing Problem Using Integer Programming,” Computers & Industrial Engineering, Vol. 59, No. 4, 2010, pp. 730-735. doi:10.1016/j.cie.2010.07.028

[22] L. Lin and H. Jia-Zhen, “Multi-Objective Flexible Job-Shop Scheduling Problem in Steel Tubes Production,” Systems Engineering—Theory & Practice, Vol. 29, No. 8, 2009, pp. 117-126.

[23] B. Yagmahan and M. M. Yenisey, “Ant Colony Optimization for Multi-Objective Flow Shop Scheduling Problem,” Computers & Industrial Engineering, Vol. 54, No. 3, 2008, pp. 411-420. doi:10.1016/j.cie.2007.08.003

[24] R.-H. Huang, “Multi-Objective Job-Shop Scheduling with Lot-Splitting Production,” International Journal of Production Economics, Vol. 124, No. 1, 2010, pp. 206-213.
doi:10.1016/j.ijpe.2009.10.026

[25] R. Zhang and C. Wu, “A Hybrid Immune Simulated Annealing Algorithm for the Job Shop Scheduling Problem,” Applied Soft Computing, Vol. 10, No. 1, 2010, pp. 79-89.
doi:10.1016/j.asoc.2009.06.008

[26] L. Wang, Q.-K. Pan, P. N. Suganthan, W.-H. Wang and Y.-M. Wang, “A Novel Hybrid Discrete Differential Evolution Algorithm for Blocking Flow Shop Scheduling Problems,” Computers & Operations Research, Vol. 37, No. 3, 2010, pp. 509-520. doi:10.1016/j.cor.2008.12.004

[27] E. Moradi, S. M. T. Fatemi Ghomi and M. Zandieh, “Bi-Objective Optimization Research on Integrated Fixed Time Interval Preventive Maintenance and Production for Scheduling Flexible Job-Shop Problem,” Expert Systems with Applications, Vol. 38, No. 6, 2011, pp. 7169-7178.
doi:10.1016/j.eswa.2010.12.043

[28] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computing, Vol. 6, No. 2, 2002, pp. 182-197. doi:10.1109/4235.996017

[29] N. Lakashminarasimman, S. Baskar, A. Alphones and M. W. Iruthayarajan, “Multiobjective Mobile Antenna Location Identification Using Evolutionary Optimization Algorithm,” Second International conference on Computing, Communication and Networking Technologies, Chettinand, 29-31 July 2010, pp. 1-4.
doi:10.1109/ICCCNT.2010.5591640

[30] H. Ishibuchi, N. Tsukamoto and Y. Nojima, “Empirical Analysis of Using Weighted Sum Fitness Functions in NSGA-II for Many-Objective 0/1 Knapsack Problems,” UKSim 2009: 11th International Conference on Computer Modelling and Simulation, Cambridge, 25-27 March 2009, pp. 71-76.

[31] A. Kumar, D. Sharma and K. Deb, “A Hybrid Multi-Objective Optimization Procedure Using PCX Based NSGA-II and Sequential Quadratic Programming,” IEEE Congress on Evolutionary Computation, 25-28 September, 2007, Singapore, pp. 3011-3018.

[32] Y. Liu, C. Zhou and W. J. Ye, “A Fast Optimization Method of Using Nondominated Sorting Genetic Algorithm (NSGA-II) and 1-Nearest Neighbor (1 NN) Classifier for Numerical Model Calibration,” IEEE International Conference on Granular Computing, Beijing, 25-27 July 2005, pp. 544-549.

[33] M. C. Wang, G. M. Dai, H. P. Hu and M. C. Wang, “Improved NSGA-II Algorithm for Optimization of Constrained Functions,” International Conference on Machine Vision and Human-machine Interface, TBD Kaifeng, 24-25 April 2010, pp. 673-675.

[34] M. T. Jensen, “Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and Other Algorithms,” IEEE Transactions on Evolutionary Computation, Vol. 7, No. 5, 2003, pp. 503-515.
doi:10.1109/TEVC.2003.817234

[35] M. Sato, H. E. Aguirre and K. Tanaka, “Effects of δ-Similar Elimination and Controlled Elitism in the NSGA-II Multiobjective Evolutionary Algorithm,” IEEE Congress on Evolutionary Computation, Vancouver, 16-21 July 2006, pp. 1164-1171.

[36] L. Yu, P. Wang and H. S. Zhu, “A Novel Diversity Preservation Strategy based on Ranking Integration for Solving Some Specific Multi-Objective Problems,” Ninth International Symposium on Distributed Computing and Applications to Business, Engineering and Science, Hong Kong, 10-12 August 2010, pp. 97-101.
doi:10.1109/DCABES.2010.145

[37] M. R. Mansour, A. C. Santos, J. B. London Jr., A. C. B. Delbem and N. G. Bretas, “Node-Depth Encoding and Evolutionary Algorithms Applied to Service Restoration in Distribution Systems,” IEEE Power and Energy Society General Meeting, Minneapolis, 25-29 July 2010, pp. 1-8.