AM  Vol.3 No.11 , November 2012
The Discrete Agglomeration Model: Equivalent Problems
Author(s) James L. Moseley
ABSTRACT
In this paper we develop equivalent problems for the Discrete Agglomeration Model in the continuous context.

Cite this paper
J. Moseley, "The Discrete Agglomeration Model: Equivalent Problems," Applied Mathematics, Vol. 3 No. 11, 2012, pp. 1702-1718. doi: 10.4236/am.2012.311236.
References
[1]   W. M. Goldberger, “Collection of Fly Ash in a Self-Agglomerating Fluidized Bed Coal Burner,” Proceedings of the ASME Annual Meeting, American Society of Mechanical Engineers, Pittsburg, 1967, 16 pp.

[2]   J. H. Siegell, “Defluidization Phenomena in Fluidized Beds of Sticky Particles at High Temperatures,” Ph.D. Thesis, City University of New York, New York, 1976.

[3]   R. L. Drake, “A General Mathematics Survey of the Coagulation Equation,” In: G. M. Hidy and J. R. Brock, Eds., Topics in Current Aerosol Research, Pergamon Press, New York, 1972.

[4]   M. Von Smoluchowski, “Versuch Einer Mathematichen Theorie der Koagulationskinetik Kollider L?sungen,” Zeitschrift fuer Physikalische Chemie, Vol. 92, No. 2, 1917, pp. 129-168.

[5]   H. Müller, “Zur Allgemeinen Theorie Ser Raschen Koagulation,” Kolloidchemische Beihefte, Vol. 27, No. 6-12, 1928, pp. 223-250.

[6]   D. Morganstern, “Analytical Studies Related to the Maxwell-Boltzmann Equation,” Journal of Rational Mechanics and Analysis, Vol. 4, No. 5, 1955, pp. 533-555.

[7]   Z. A. Melzack, “A Scalar Transport Equation,” Transactions of the American Mathematical Society, Vol. 85, No. 2, 1957, pp. 547-560. doi:10.1090/S0002-9947-1957-0087880-6

[8]   J. B. McLeod, “On a Finite Set of Nonlinear Differential Equations (II),” Quarterly Journal of Mathematics, Vol. 13, No. 1, 1962, pp. 193-205. doi:10.1093/qmath/13.1.193

[9]   A. Marcus, “Unpublished Notes,” Rand Corporation, Santa Monica, 1965.

[10]   W. H. White, “A Global Existence Theorem for Smoluchowski’s Coagulation Equations,” Proceedings of the American Mathematical Society, Vol. 80, No. 2, 1980, pp. 273-276.

[11]   J. L. Spouge, “An Existence Theorem for the Discrete Coagulation-Fragmentation Equations,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 96, No. 2, 1984, pp. 351-357. doi:10.1017/S0305004100062253

[12]   R. P. Treat, “An Exact Solution of the Discrete Smoluchowski Equation and Its Correspondence to the Solution in the Continuous Equation,” Journal of Physics A: Mathematical and General, Vol. 23, No. 13, 1990, pp. 3003-3016. doi:10.1088/0305-4470/23/13/035

[13]   D. J. McLaughlin, W. Lamb and A. C. McBride, “An Existence and Uniqueness Result for a Coagulation and Multi-Fragmentation Equation,” SIAM Journal on Mathematical Analysis, Vol. 28, No. 5, 1997, pp 1173-1190. doi:10.1137/S0036141095291713

[14]   J. L. Moseley, “The Discrete Agglomeration Model with Time Varying Kernel,” Nonlinear Analysis: Real World Applications, Vol. 8, No. 2, 2007, pp. 405-423. doi:10.1016/j.nonrwa.2005.12.001

[15]   J. L. Moseley, “The Discrete Agglomeration Model: The Fundamental Agglomeration Problem with a Time-Varying Kernel,” Far East Journal of Applied Mathematics, Vol. 47, No. 1, 2010, pp. 17-34.

[16]   R. H. Martin, “Nonlinear Operators and Differential Equations in Banach Spaces,” John Wiley & Sons, New York, 1976

[17]   A.W. Naylor and G. R. Sell, “Linear Operator Theory in Engineering and Science,” Holt Rinehart ND Winston, Inc., New York, 1971.

[18]   R. G. Bartle, “The Elements of Real Analysis,” John Wiley & Sons, New York, 1976.

[19]   J. Stewart, “Essential Calculus, Early Transcendentals,” Thomson Brooks/Cole, Independence, 2007

[20]   F. Brauer and J. A. Nohel, “The Qualitative Theory of Ordinary Differential Equations,” W. A. Benjamin, Inc., New York, 1969

[21]   W. Kaplan, “Advanced Calculus,” Addison-Wesley Publishing Company, Redwood City, 1991.

 
 
Top