Symmetric Solutions of a Nonlinear Elliptic Problem with Neumann Boundary Condition

Show more

References

[1] A. D. Alexandrov, “Uniqueness Theorems for Surfaces in the Large,” Vestnik Leningrad University: Mathematics, Vol. 13, No. 19, 1958, pp. 5-8.

[2] J. Serrin, “A Symetry Problem in Potential Theory,” Archive for Rational Mechanics and Analysis, Vol. 43, No. 4, 1971, pp. 304-318. doi:10.1007/BF00250468

[3] B. Gidas, W.-M. Ni and L. Nirenberg, “Symmetry and Related Properties via Maximum Principle,” Communications in Mathematical Physics, Vol. 68, No. 3, 1979, pp. 209-243. doi:10.1007/BF01221125

[4] B. Gidas, W.-M. Ni and L. Nirenberg, “Symmetry of Positive Solutions of Nonlinear Elliptic Equations in ,” In: Mathematical Analysis and Applications, Part A, Academic Press, New York, 1981, pp. 369-402.

[5] L. Cafarelli, B. Gidas and J. Spruck, “Asymptotic Symmetry and Local Behavior of Semilinear Elliptic with Critical Sobolev Growth,” Communications on Pure and Applied Mathematics, Vol. 42, No. 3, 1989, pp. 271-297.
doi:10.1002/cpa.3160420304

[6] H. Berestycki and L. Nirenberg, “On the Method of Moving Planes and the Sliding Method,” Bulletin of the Brazilian Mathematical Society, Vol. 22, No. 1, 1991, pp. 1-37.

[7] F. John, “Partial Differential Equations,” Springer-Verlag, New York, 1982.

[8] M. Protter and H. Weinberger, “Maximum Principle in Differential Equations,” Springer-Verlag, New York, 1984.
doi:10.1007/978-1-4612-5282-5

[9] D. Gilbarg and N. Trudinger, “Elliptic Partial Differential Equations of Second Order,” Springer-Verlag, Berlin, Heidelberg, New York, 1977.