Semantic model and optimization of creative processes at mathematical knowledge formation

References

[1] Galilei, G. (1964) Il Saggiatore. Opere. Salani, Firenze.

[2]
Newton, I. (1946) Mathematical Principles of Natural Philosophy. The Universitet of California Press, Berkley.

[3]
Boltzmann, L. (1909) Wissenschaftliche abhandlungen. Leipzig.

[4]
Wiener, N. (1961) Cybernetics (or control and communication in the animal and machine). The MIT Press, New York.

[5]
Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423.

[6]
Henry, P. and Lazarsfeld, N.W. (1966) Readings in mathematical social science. In: P. F. Lazarsfeld and N. W. Henry Eds., A Collection of Articles, Science Research Associates, Chicago.

[7]
Rosenblatt, F. (1958) The perception: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408.

[8]
Feigenbaum, E.A. (1963) Computers and thought. In: E. A. Feigenbaum and J. Feldman Eds., A Collection of Articles, McGraw-Hill Book Co., New York, 477-523

[9]
Anderson, J.R. (1983) The architecture of cognition. Harvard University Press, Cambridge, Massachusetts, USA.

[10]
Hopfild, J.J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of USA, 79(8), 2554-2558.

[11]
Brusilovsky, P. (1996) An intelligent tutoring system onWorld-Wide Web. Proceedings of the 3th International WWW Conference, Fraunhofer Institute for Computer Grafics, Darmstagt, 42-45.

[12]
Firstov, V.E. (2006) The semantic model and optimization trough mathematical knowledge formation and propagation. Vestnik Saratov State Technical University, 3(14), 34-43.

[13]
Rashevsky, N. (1955) Live, information theory and topology. The Bulletin of Mathematical Biophysics, 17(3), 25-78.

[14]
Kolmogorov, A.N. [in Russian: Колмогоров А. Н. (1965) Три подхода к определению понятия “количество информации”. Проблмы передачи информации. Т.1, вып.1, сс.3-11].

[15]
Firstov, V.E. (2006) The stochastic model by the information space of deductive theory formation and optimization of the research work in mathematics. Vestnik Saratov State Technical University, 4(17), 13-21.

[16]
Harris, T.E. (1963) The theory of branching processes. Springer-Verlag, Berlin-G?ttingen-Heidelberg.

[17]
Glaser, R. (1984) Education and thinking: The role of knowledge. American Psychologist, 39(2), 93-104.

[18]
Hilbert, D. (1900) Mathematische probleme. Nachr. Ges. Wiss. G?ttingen, 253-297.

[19]
Moulin, H. (1988) Axioms of cooperative decision making. Cambridge University Press, Cambridge-New York- New Rochelle-Melbourne-Sydney.

[20]
M?bius, A.F. (1885) Der barycentrische calcul. Bd. 1, Gesammelte Werke, Leipzig.

[21]
Hardy, G.H. (1908) Mendelian proportions in a mixed population. Science, 28(706), 49-50.

[22]
Weinberg, W. (1908) über den Nachwies der Vererbung beim Menschen. Jahreshefte des Vereins for Vater- landische Naturkunde in Würtemberg, 64, 368-382.

[23]
Crow, J.F. and Kimura, M. (1970) An introduction in Population Genetics Theory. Harper and Row, New York.

[24]
Arnheim, R. (1988) The power of the center. A study of composition in the visual arts. University of California Press, Berkeley.

[25]
Firstov, V.V., Firstov, V.E. and Voloshinov, A.V. (2005) Conception of colorimetric barycenter in painting analysis. Proceedings of the International Congress on Aesthetics, Creativity and Psychology of the Arts, Moscow, 2005, 258-260.

[26]
Firstov, V.V., Firstov, V.E. and Voloshinov, A.V. (2006) The concept of colorimetric barycenter in group analysis of painting. Culture and Communication: Proceedings of the XIX Congress International Association of Empirical Aesthetics, Avignon, France, 2006, 439-443.

[27]
Firstov, V. V., Firstov, V. E., Voloshinov, A. V. and Locher, P. (2007) The Colorimetric Barycenter of Paintings. Empirical Studies of the Arts, 25(2), 209-217.

[28]
Firstov, V.E., Firstov, V.V. and Voloshinov, A.V. (2008) The concept of colorimetric barycenter and visual perception of the color balance center in painting. Proceedings of the XX Biennial Congress of the International Association of Empirical Aesthetics, Chicago, USA, 2008, 273-277.

[29]
Firstov, V.E. (2009) About teaching math in humanitarian specializations and occupations in IHE. Higher Education Today, 2, 82-84.

[30]
Firstov, V.E. (2009) Cybernetic concept of current educational process. Higher Education Today, 3, 66-68.

[31]
Firstov, V.E. (2007) Dialogue education: Cybernetic aspect. Vestnik Saratov State Technical University, 4(28), 135-145.

[32]
Firstov, V.E. (2008) Informational conception of optimization of group cooperation in teaching. Vestnik Saratov State Technical University, 3(34), 105-109.

[33]
Firstov, V.E. (2008) The concept of defeveloping training of L.S. Vygotsky, pedagogics of cooperation and cybernetics. Yaroslavl Pedagogical Bulletin, 3(56), 98- 104.

[34]
Firstov, V.E. (2009) Expert systems and information conception in developing training. Yaroslavl Pedagogical Bulletin, 1(58), 69-73.

[35]
Firstov, V.E. (2008) A special matrix trasformation semigroup of primitive pairs and the genealogy of pythagorean triples. Mathematical Notes, 84(2), 263-279.