Back
 APM  Vol.2 No.6 , November 2012
Fixed Point and Common Fixed Point Theorems for Cyclic Quasi-Contractions in Metric and Ultrametric Spaces
Abstract: In this paper, we prove introduce some fixed point theorems for quasi-contraction under the cyclical conditions. Then, we point out that a common fixed point extension is also applicable via our earlier results equipped together with a weaker cyclical properties, namely a co-cyclic representation. Examples are as well provided along this paper.
Cite this paper: P. Chaipunya, Y. Cho, W. Sintunavarat and P. Kumam, "Fixed Point and Common Fixed Point Theorems for Cyclic Quasi-Contractions in Metric and Ultrametric Spaces," Advances in Pure Mathematics, Vol. 2 No. 6, 2012, pp. 401-407. doi: 10.4236/apm.2012.26060.
References

[1]   S. Banach, “Sur les Opérations Dans les Ensembles Abstraits Et Leur Applications Aux équations Intégrales,” Fundamenta Mathematicae, Vol. 3, 1922, p. 160.

[2]   Lj. Ciric, “Generalized Contractions and Fixed-Point Theorems,” Publications de l’Institut Mathématique, Vol. 12, No. 26, 1971, pp. 19-26.

[3]   Lj. B. Ciric, “A Generalization of Banach’s Contraction Principle,” Proceedings of the American Mathematical Society, Vol. 45, No. 2, 1974, pp. 267-273. doi:10.2307/2040075

[4]   I. A. Rus, “Cyclic Representations and Fixed Points,” Ann. T. Popoviciu Seminar Funct. Eq. Approx. Convexity, Vol. 3, 2005, pp. 171-178.

[5]   M. Pacurar and I. A. Rus, “Fixed Point Theory for Cyclic φ-Contractions,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 72, No. 3-4, 2010, pp. 1181-1187. doi:10.1016/j.na.2009.08.002

[6]   E. Karapinar, “Fixed Point Theory for Cyclic Weakφ-Contraction,” Applied Mathematics Letters, Vol. 24, No. 6, 2011, pp. 822-825. doi:10.1016/j.aml.2010.12.016

[7]   W. Sintunavarat and P. Kumam, “Common Fixed Point Theorem for Cyclic Generalized Multi-Valued Contraction Mappings,” Applied Mathematics Letters, Vol. 25, No. 11, 2012, pp. 1849-1855. doi:10.1016/j.aml.2012.02.045

[8]   R. H. Haghi, Sh. Rezapour and N. Shahzad, “Some Fixed Point Generalizations Are Not Real Generalizations,” Non-linear Analysis: Theory, Methods & Applications, Vol. 74, No. 5, 2011, pp. 1799-1803. doi:10.1016/j.na.2010.10.052

[9]   G. Junck and B. E. Rhoades, “Fixed Point for Set Valued Functions without Continuity,” Indian Journal of Pure and Applied Mathematics, Vol. 29, No. 3, 1998, pp. 227-238.

 
 
Top