ACS  Vol.2 No.4 , October 2012
Communicating the Probabilities of Extreme Surface Temperature Outcomes
Abstract: The magnitude of the future global warming is uncertain, but the possible dramatic changes associated with high temperatures have seen rising attention in the literature. Projections of temperature change in the literature are often presented in probabilistic terms and typically highlight the most likely ranges of future temperature under assumed emission scenarios. However, focusing on these high probability outcomes of global warming omits important information related to the threats of low-probability but high-impact outcomes under more extreme change. As such, we argue that the literature should place more emphasis on communicating the probabilities of extreme temperature change, in a way that is accessible to policymakers and the general public. The damage associated with climate change is likely to be non-linear with temperature, and thus extreme temperature changes may pose a larger risk than the most likely outcomes. We use a simple climate model to explore the probabilities of high surface temperature under business as usual emissions scenarios, given current knowledge of the climate system. In a business as usual scenario (A1FI) we find the probability of “likely” warming (central 66%) to be approximately 4.4°C-6.9°C in 2100 (above 1900 levels). However, we find extreme (>7°C) warming to embody a notable portion of damage risk compared to this likely range.
Cite this paper: N. Rive and G. Myhre, "Communicating the Probabilities of Extreme Surface Temperature Outcomes," Atmospheric and Climate Sciences, Vol. 2 No. 4, 2012, pp. 538-545. doi: 10.4236/acs.2012.24049.

[1]   European Commission, “Decision of the European Parliament and of the Council on the Effort of Member States to Reduce Their Greenhouse Gas Emissions to Meet the Community’s Greenhouse Gas Emission Reduction Commitments up to 2020,” 2008.

[2]   UNFCCC, “Draft decision-/CP.15: Copenhagen Accord,” Conference of Parties, Copenhagen, 2009.

[3]   IPCC, “The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, 2007.

[4]   R. Knutti, T. F. Stocker, F. Joos and G. K. Plattner, “Probabilistic Climate Change Projections Using Neural Networks,” Climate Dynamics, Vol. 21, No. 3-4, 2003, pp. 257-272. doi:10.1007/s00382-003-0345-1

[5]   T. M. L. Wigley and S. C. B. Raper, “Interpretation of High Projections for Global-Mean Warming,” Science, Vol. 293, No. 5529, 2001, pp. 451-454. doi:10.1126/science.1061604

[6]   M. Meinshausen, et al., “Greenhouse-Gas Emission Targets for Limiting Global Warming to 2 Degrees C,” Nature, Vol. 458, No. 7242, 2009, pp. 1158-1162. doi:10.1038/nature08017

[7]   R. S. J. Tol, “The Economic Effects of Climate Change,” Journal of Economic Perspectives, Vol. 23, No. 2, 2009, pp. 29-51. doi:10.1257/jep.23.2.29

[8]   T. M. Lenton, et al., “Tipping Elements in the Earth’s Climate System,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 6, 2008, pp. 1786-1793. doi:10.1073/pnas.0705414105

[9]   M. L. Parry, O. F. Canziani, J. P. Palutikof and Co-Authors, “Technical Summary. Climate Change 2007: Impacts, Adaptation and Vulnerability,” In: M. L. Parry, et al., Eds., Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007.

[10]   J. Hansen, et al., “Dangerous Human-Made Interference with Climate: A GISS Modele Study,” Atmospheric Chemistry and Physics, Vol. 7, No. 9, 2007, pp. 2287-2312. doi:10.5194/acp-7-2287-2007

[11]   G. H. Roe and M. B. Baker, “Why Is Climate Sensitivity So Unpredictable?” Science, Vol. 318, No. 5850, 2007, pp. 629-632. doi:10.1126/science.1144735

[12]   D. A. Stainforth, et al., “Uncertainty in Predictions of the Climate Response to Rising Levels of Greenhouse Gases,” Nature, Vol. 433, No. 7024, 2005, pp. 403-406. doi:10.1038/nature03301

[13]   P. Forster, et al., “Changes in Atmospheric Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis,” In: S. Solomon, et al., Eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007.

[14]   J. Hansen, et al., “Earth’s Energy Imbalance: Confirmation and Implications,” Science, Vol. 308, No. 5727, 2005, pp. 1431-1435. doi:10.1126/science.1110252

[15]   Y. J. Kaufman, D. Tanre and O. Boucher, “A Satellite View of Aerosols in the Climate System,” Nature, Vol. 419, No. 6903, 2002, pp. 215-223. doi:10.1038/nature01091

[16]   G. Myhre, “Consistency between Satellite-Derived and Modeled Estimates of the Direct Aerosol Effect,” Science, Vol. 325, No. 5937, 2009, pp. 187-190. doi:10.1126/science.1174461

[17]   M. O. Andreae, C. D. Jones and P. M. Cox, “Strong Present-Day Aerosol Cooling Implies a Hot Future,” Nature, Vol. 435, No. 7046, 2005, pp. 1187-1190. doi:10.1038/nature03671

[18]   M. G. J. den Elzen and M. Meinshausen, “Multi-Gas Emission Pathways for Meeting the EU 2℃ Climate Target in Avoiding Dangerous Climate Change,” Cambridge University Press, Cambridge, 2006.

[19]   H. Kunreuther, N. Novemsky and D. Kahneman, “Making Low Probabilities Useful,” Journal of Risk and Uncertainty, Vol. 23, No. 2, 2001, pp. 103-120. doi:10.1023/A:1011111601406

[20]   W. D. Nordhaus and J. Boyer, “Warming the World: Economic Models of Global Warming,” Cambridge University Press, Cambridge, 2000.

[21]   R. S. J. Tol, “On the Optimal Control of Carbon Dioxide Emissions: An Application of FUND,” Environmental Modeling and Assessment, Vol. 2, No. 3, 1997, pp. 151-163. doi:10.1023/A:1019017529030

[22]   F. Ackerman, E. A. Stanton and R. Bueno, “Fat Tails, Exponents, Extreme Uncertainty: Simulating Catastrophe in DICE,” Ecological Economics, Vol. 69, No. 8, 2010, pp. 1657-1665. doi:10.1016/j.ecolecon.2010.03.013

[23]   M. L. Weitzman, “On Modeling and Interpreting the Economics of Catastrophic Climate Change,” Review of Economics and Statistics, Vol. 91, No. 1, 2009, pp. 1-19. doi:10.1162/rest.91.1.1

[24]   H. C. Kunreuther and E. O. Michel-Kerjan, “The Development of New Catastrophe Risk Markets,” Annual Review of Resource Economics, Vol. 1, 2009, pp. 119-137.

[25]   M. L. Weitzman, “GHG Targets as Insurance agains Catastrophic Climate Damages,” Harvard University, Cambridge, 2009.

[26]   G. Yohe, N. Andronova and M. Schlesinger, “Climate— To Hedge or Not against an Uncertain Climate,” Science, Vol. 306, No. 5695, 2004, pp. 416-417. doi:10.1126/science.1101170

[27]   IPCC, “Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability,” In: M. L. Parry, et al., Eds., Contribution of Working Group II to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2007, p. 16.

[28]   N. Nakicenovic and R. Swart, “Special Report of Working Group III of the Intergovernmental Panel on Climate Change,” Cambridge Univeristy Press, Cambridge, 2000.

[29]   S. Schneider, “The Worst-Case Scenario,” Nature, Vol. 458, No. 7242, 2009, pp. 1104-1105. doi:10.1038/4581104a

[30]   G. Myhre, K. Alterskjaer and D. Lowe, “A Fast Method for Updating Global Fossil Fuel Carbon Dioxide Emissions,” Environmental Research Letters, Vol. 4, No. 3, 2009, Article ID: 034012. doi:10.1088/1748-9326/4/3/034012

[31]   J. S. Fuglestvedt and T. Berntsen, “A Simple Model for Scenario Studies of Changes in Global Climate: Version 1.0,” 1999.

[32]   J. S. Fuglestvedt, et al., “Metrics of Climate Change: Assessing Radiative Forcing and Emission Indices,” Climatic Change, Vol. 58, No. 3, 2003, pp. 267-331. doi:10.1023/A:1023905326842

[33]   N. Rive, A. Torvanger, T. Berntsen and S. Kallbekken, “To What Extent Can a Long-Term Temperature Target Guide Near-Term Climate Change Commitments?” Climatic Change, Vol. 82, No. 3-4, 2007, pp. 373-391. doi:10.1007/s10584-006-9193-4

[34]   M. Schlesinger, M. E. Jiang and R. J. Charlson, “Implication of Anthropogenic Atmospheric Sulphate for the Sensitivity of the Climate System,” Proceedings of the International Conference on Global Climate Change, New York, 1992.

[35]   D. Harvey, et al., “An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report,” 1997.

[36]   European Commissionand Joint Research Centre, “Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.0,” 2009.

[37]   T. Boden, G. Marland and R. J. Andres, “National CO2 Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-2006,” 2009.

[38]   F. Joos, et al., “An Efficient and Accurate Representation of Complex Oceanic and Biospheric Models of Anthropogenic Carbon Uptake,” Tellus Series B-Chemical and Physical Meteorology, Vol. 48, No. 3, 1996, pp. 397-417. doi:10.1034/j.1600-0889.1996.t01-2-00006.x

[39]   M. Aldrin, et al., “Bayesian Estimation of Climate Sensitivity Based on a Simple Climate Model Fitted to Observations of Hemispheric Temperatures and Global Ocean Heat Content,” Environmetrics, Vol. 23, No. 3, 2012, pp. 253-271. doi:10.1002/env.2140

[40]   A. P. Sokolov, et al., “Probabilistic Forecast for Twenty-First-Century Climate Based on Uncertainties in Emissions (without Policy) and Climate Parameters,” Journal of Climate, Vol. 22, No. 19, 2009, pp. 5175-5204. doi:10.1175/2009JCLI2863.1

[41]   J. D. Annan and J. C. Hargreaves, “On the Generation and Interpretation of Probabilistic Estimates of Climate Sensitivity,” Climatic Change, Vol. 104, No. 3-4, 2011, pp. 423-436. doi:10.1007/s10584-009-9715-y

[42]   P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett and P. D. Jones, “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Data Set from 1850,” Journal of Geophysical Research-Atmospheres, Vol. 111, No. D12, 2006, Article ID: D12106. doi:10.1029/2005JD006548

[43]   E. Kriegler, “Imprecise Probability Analysis for Integrated Assessment of Climate Change,” Potsdam University, Potsdam, 2005.

[44]   H. von Storch and F. W. Zwiers, “Statistical Analysis in Climate Research,” Cambridge University Press, Cambridge, 2002.

[45]   J. Rogelj, et al., “Copenhagen Accord Pledges Are Paltry,” Nature, Vol. 464, No. 7292, 2010, pp. 1126-1128. doi:10.1038/4641126a

[46]   Stern, “The Economics of Climate Change: The Stern Review,” 2006.

[47]   R. Suskind, “The One Percent Doctrine: Deep Inside America’s Pursuit of Its Enemies Since 9/11,” Simon & Schuster, New York, 2006.

[48]   C. R. Sustein and R. Zeckhauser, “Overreaction to Fearsome Risks,” Environmental Resource Economics, in Press.

[49]   D. Olivie and N. Stuber, “Emulating AOGCM Results Using Simple Climate Models,” Climate Dynamics, Vol. 35, No. 7-8, 2010, pp. 1257-1287. doi:10.1007/s00382-009-0725-2

[50]   R. B. Skeie, et al., “Anthropogenic Radiative Forcing Time Series from Pre-Industrial Times until 2010,” Atmospheric Chemistry and Physics, Vol. 11, No. 22, 2011, pp. 11827-11857.