Back
 WET  Vol.3 No.4 , October 2012
Energy Detector with Baseband Sampling for Cognitive Radio: Real-Time Implementation
Abstract: Cognitive radio (CR) is a technology that provides a promising new way to improve the efficiency of the use of the electromagnetic spectrum that available. Spectrum sensing helps in the detection of spectrum holes (unused channels of the band), and instantly move into vacant channels while avoiding occupied ones. An energy detector with baseband sampling for CR is presented with mathematical analyses for an additive white Gaussian noise (AWGN) channels. A brief overview of the energy detection based spectrum sensing for CR technology is introduced. Practical implementation issues on Texas Instruments TMS320C6713 floating point DSP board are presented. Novelties of this work came from a derivation of probability of detection and probability of false alarm for the baseband energy detector without including the sampling theorems and the associated approximation.
Cite this paper: M. Abdulsattar and Z. Hussein, "Energy Detector with Baseband Sampling for Cognitive Radio: Real-Time Implementation," Wireless Engineering and Technology, Vol. 3 No. 4, 2012, pp. 229-239. doi: 10.4236/wet.2012.34033.
References

[1]   I. F. Akyildiz, W.Y. Lee, M. C. Vuran, and S. Mohanty, “Next generationdynamic spectrum access/cognitive radio wireless networks: a survey,” Computer Networks J. (Elsevier), vol. 50,Sept. 2006, pp. 2127–2159. doi:10.1016/j.comnet.2006.05.001

[2]   S. Haykin, “Cognitive radio: brain-empowered wireless communications,”IEEE J. Select. Areas Com., vol. 23, no. 2, Feb. 2005, pp. 201–220. doi:10.1109/JSAC.2004.839380

[3]   D. Cabric, S. M. Mishra, D. Willkomm, R. W. Brodersen, and A. Wolisz,“A cognitive radio approach for usage of virtual unlicensed spectrum,” in Proc. 14th IST Mobile and Wireless Commun. Summit, June 2005.

[4]   W. Zhang, R. Mallik and K.Letaief, “Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 8, Dec. 2009, pp.5761-5766.

[5]   H. P. Zhiquan, Shuguang Cui and A. Sayed, “Collaborative wideband sensing for cognitive radios,” IEEE Signal Processing Magazine, vol. 25, no. 6, Nov. 2008, pp. 60–73. doi:10.1109/MSP.2008.929296

[6]   D. Cabric, S.M. Mishra and R.W. Brodersen, “Implementation Issues inSpectrum Sensing for Cognitive Radios,” in Proc. Asilomar Conf. on Signals,Syst., and Comput., Pacific Grove, Nov. 2004, pp.772-776.

[7]   W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half a century of research,” Signal Processing, vol. 86, no. 4, Apr. 2006, pp. 639–697. doi:10.1016/j.sigpro.2005.06.016

[8]   DanijelaCabric, ShridharMubaraq Mishra, and Bobert W. Brodersen, “ImplementationIssues in Spectrum Sensing for Cognitive Radios,”Berkeley Wireless Research Center,University of California, BerkeleyNov. 2004.

[9]   PrzemystawPawetczak, GeardJ.M.Janssen, and R.Venkatesha Prasad, “PerformanceMeasures ofDynamic Spectrum Access Networks,”IEEE Global Telecomm. Conf. SanFrancisco, California, USA, 2006.

[10]   H. Urkowitz, “Energy detection of unknown deterministic signals,” Proceedings of the IEEE, vol. 55, no. 4, 1967, pp. 523–531. doi:10.1109/PROC.1967.5573

[11]   L. L. Scharf, “Statistical Signal Processing: Detection, Estimation and Time Series Analysis,” Addison-Wesley, Reading, 1991.

[12]   S. M. Kay, “Fundamentals of Statistical Signal Processing: Detection Theory,” NJ: Prentice-Hall, 1st edition, 1998.

[13]   H. V. Poor, “An Introduction to Signal Detection and Estimation, Springer,” New York, 1994.

[14]   F. F. Digham, M. S. Alouini, and M. K. Simon, “On the energy detection of unknown signals over fading channels,” Commun., vol. 5, May 2003, pp. 3575-3579.

[15]   R. F. Mills and G. E. Prescon, “A comparison of various radiometer detection models,”IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 1,Jan. 1996, pp. 467-473. doi:10.1109/7.481289

[16]   S. Ciftci and M. Torlak, “A comparison of energy detectability models for spectrum sensing,”Proc. of IEEE GLOBECOM , 2008, pp. 1-5.

[17]   J. J. Lehtomaki, “Analysis of energy based signal detection,” A Doctoral Dissertation, University of Oulu, 2005. http://herkules.oulu.fi/isbn9514279255.

[18]   V. I. Kostylev, “Energy detection of a signal with random amplitude,” in Proc. ICC 2002, New York, ,May 2002, pp. 1606-1610.

[19]   Y. Chen, "Improved energy detector for random signals in Gaussian noise," IEEE Trans. Wireless Commun., vol. 9,Feb. 2010, pp. 558-563. doi:10.1109/TWC.2010.5403535

[20]   Won-YeolLee , I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” IEEE Trans. Wireless Commun., vol.7, Oct. 2008,pp. 3845-3857.

[21]   J. G. Proakis, “Digital communications,” fourth ed., McGraw-Hill, 2001.

[22]   I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products,” 7th ed. San Diego, CA: Academic, 2007.

[23]   J. J. Lehtomaki, “The Detection and Correlation Modeling of Rayleigh Distribution Radar Signal,” A Master Dissertation, Air Force Institute of Technology, University of Air, 1992. www.dtic.mil/cgi-bin/GetTRDoc?AD=ada256612.

[24]   Press William H., Teukolsky Saul A., VetterlingWilliam T., Flannery Brian P.,“Numerical Recipes in C,” UK: Cambridge University Press, 2002.

[25]   Carta D. ‘Two Fast Implementations of the Minimal Standard Random Number Generator’, Communications of the ACM, vol. 33, no. 1, 1990, pp. 87-88. doi:10.1145/76372.76379

[26]   http://www.radartutorial.eu/18.explanations/ex10.en.html

 
 
Top