Existence of Nonoscillatory Solutions of a Class of Nonlinear Dynamic Equations with a Forced Term

Show more

References

[1] S. Hilger, “Analysis on Measure Chains—A Unified Approach to Continuous and Discrete Calculus,” Results in Mathematics, Vol. 18, No. 1-2, 1990, pp. 18-56.

[2] R. Agarwal, M. Bohner, D. O’Regan and A. Peterson, “Dynamic Equations on Time Scales: A Survey,” Journal of Computational and Applied Mathematics, Vol. 141, No. 1-2, 2002, pp. 1-26. doi:10.1016/S0377-0427(01)00432-0

[3] M. Bohner and A. Peterson, “Dynamic Equations on Time Scales: An Introduction with Applications,” Birkh?user, Boston, 2001.

[4] M. Bohner and A. Peterson, “Advances in Dynamic Equations on Time Scales,” Birkh?user, Boston, 2003.
doi:10.1007/978-0-8176-8230-9

[5] B. G. Zhang and S. L. Zhu, “Oscillation of Second-Order Nonlinear Delay Dynamic Equations on Time Scales,” Computers & Mathematics with Applications, Vol. 49, No. 4, 2005, pp. 599-609.

[6] Q. L. Li and Z. Zhang, “Existence of Solutions to Nth Order Neutral Dynamic Equations on Time Scale,” Electronic Journal of Differential Equations, Vol. 2010, No. 151, 2010, pp. 1-8. http://ejde.math.txstate.edu or
http://ejde.math.unt.edu, ftp ejde.math.txstate.edu

[7] D. X. Chen, “Oscillation and Asymptotic Behavior for Nth-Order Nonlinear Neutral Delay Dynamic Eqautions on Time Scales,” Acta Applicandae Mathematicae, Vol. 109, No. 3, 2010, pp. 703-719.
doi:10.1007/s10440-008-9341-0

[8] T. S. Hassan, “Oscillation of Third Order Nonlinear Delay Dynamic Equations on Time Scales,” Mathematical and Computer Modelling, Vol. 49, No. 7-8, 2009, pp. 1573-1586. doi:10.1016/j.mcm.2008.12.011

[9] Z. Q. Zhu and Q. R. Wang, “Existence of Nonoscillatory Solutions to Neutral Dynamic Equations on Time Scales,” Journal of Mathematical Analysis and Applications, Vol. 335, No. 2, 2007, pp. 751-762.
doi:10.1016/j.jmaa.2007.02.008

[10] T. Li, Z. Han, S. Sun and D. Yang, “Existence of Nonoscillatory Solutions to Second-Order Neutral Delay Dynamic Equations on Time Scales,” Advances in Difference Equations, Vol. 2009, 2009, pp. 1-10.
doi:10.1155/2009/562329

[11] T. X. Sun, H. Xi, X. Peng and W. Yu, “Nonoscillatory Solutions for Higher-Order Neutral Dynamic Equations on Time Scales,” Abstract and Applied Analysis, Vol. 2010, 2010, pp. 1-16. doi:10.1155/2010/428963

[12] B. G. Zhang and X. H. Deng, “Oscillation of Delay Differential Equations on Time Scales,” Mathematical and Computer Modelling, Vol. 36, No. 11-13, 2002, pp. 1307-1318. doi:10.1016/S0895-7177(02)00278-9

[13] B. G. Zhang and Y. J. Sun, “Existence of Nonoscillatory Solutions of a Class of Nonlinear Difference Equations with a Forced Term,” Mathematica Bohemica, Vol. 126, No. 3, 2001, pp. 639-647.

[14] Y. Zhou and B. G. Zhang, “Existence of Nonoscillatory Solutions of Higher-Order Neutral Delay Difference Equations,” Computers & Mathematics with Applications, Vol. 45, No. 6-9, 2003, pp. 991-1000.
doi:10.1016/S0898-1221(03)00074-9

[15] W. D. Lu, “Existence of Nonoscillatory Solutions of First Order Nonlinear Neutral Equations,” Journal of the Australian Mathematical Society Series B, Vol. 32, No. 2, 1990, pp. 180-192.