OJDM  Vol.2 No.4 , October 2012
Fast Converging Series for Riemann Zeta Function
ABSTRACT
Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals.

Cite this paper
H. Olkkonen and J. Olkkonen, "Fast Converging Series for Riemann Zeta Function," Open Journal of Discrete Mathematics, Vol. 2 No. 4, 2012, pp. 131-133. doi: 10.4236/ojdm.2012.24025.
References
[1]   J. M. Borwein, D. M. Bradley and R. E. Crandall, “Computational Strategies for the Riemann Zeta Function,” Journal of Computational and Applied Mathematics, Vol. 121, No. 1-2, 2000, pp. 247-296. doi:10.1016/S0377-0427(00)00336-8

[2]   R. Apéry, “Irrationalité de et ,” Astérisque, Vol. 61,1979, pp. 11-13.

[3]   F. Beukers, “A Note on the Irrationality of ,” Bulletin London Mathematical Society, Vol. 11, No. 3, 1979, pp. 268-272.

[4]   E. Grosswald, “Remarks Concerning the Values of the Riemann Zeta Function at Integral, Odd Arguments,” Journal of Number Theory, Vol. 4, No. 3, 1972, pp. 225-235. doi:10.1016/0022-314X(72)90049-2

[5]   D. Cvijovic and J. Klinowski, “Integral Representations of the Riemann Zeta Function for Odd-Integer Arguments,” Journal of Computational and Applied Mathematics, Vol. 142, No. 2, 2002, pp. 435-439. doi:10.1016/S0377-0427(02)00358-8

[6]   T. Ito, “On an Integral Representation of Special Values of the Zeta Function at Odd Integers,” Journal of the Mathematical Society of Japan, Vol. 58, No. 3, 2006, pp. 681-691. doi:10.2969/jmsj/1156342033

[7]   H. Olkkonen and J. T. Olkkonen, “Log-Time Sampling of Signals: Zeta Transform,” Open Journal of Discrete Mathematics, Vol. 1, No. 2, 2011, pp. 62-65. doi:10.4236/ojdm.2011.12008

 
 
Top