AM  Vol.3 No.10 A , October 2012
Optimization of Geometry at Hartree-Fock level Using the Generalized Simulated Annealing
ABSTRACT
This work presents a procedure to optimize the molecular geometry at the Hartree-Fock level, based on a global opti-mization method—the Generalized Simulated Annealing. The main characteristic of this methodology is that, at least in principle, it enables the mapping of the energy hypersurface as to guarantee the achievement of the absolute minimum. This method does not use expansions of the energy, nor of its derivates, in terms of the conformation variables. Distinctly, it performs a direct optimization of the total Hartree-Fock energy through a stochastic strategy. The algorithm was tested by determining the Hartree-Fock ground state and optimum geometries of the H2, LiH, BH, Li2, CH+, OH?, FH, CO, CH, NH, OH and O2 systems. The convergence of our algorithm is totally independent of the initial point and do not require any previous specification of the orbital occupancies.

Cite this paper
L. Malbouisson, A. Sobrinho, M. Nascimento and M. Andrade, "Optimization of Geometry at Hartree-Fock level Using the Generalized Simulated Annealing," Applied Mathematics, Vol. 3 No. 10, 2012, pp. 1526-1531. doi: 10.4236/am.2012.330212.
References
[1]   A N. Metropolis and S. Ulam, “The Monte Carlo Method,” Journal of the American Statistical Association, Vol. 44, No. 247, 1949, pp. 335-341. doi:10.1080/01621459.1949.10483310

[2]   N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines,” Journal of Chemical Physics, Vol. 21, No. 6, 1953, pp. 1087-1092. doi:10.1063/1.1699114

[3]   S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, “Optimization by Simulated Annealing,” Science, Vol. 220, No. 8, 1983, pp. 671-680. doi:10.1126/science.220.4598.671

[4]   S. Kirkpatrick, “Optimization by Simulated Annealing: Quantitative Studies,” Journal of Statistical Physics, Vol. 34, No. 5-6, 1984, pp. 975-986. doi:10.1007/BF01009452

[5]   H. Szu and R. Hartley, “Fast Simulated Annealing,” Physics Letters A, Vol. 122, No. 3-4, 1987, pp. 157-162. doi:10.1016/0375-9601(87)90796-1

[6]   S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 6, 1984, pp. 721-741. doi:10.1109/TPAMI.1984.4767596

[7]   C. Tsallis and D. A. Stariolo, “Generalized Simulated Annealing,” Physica A, Vol. 233, No. 1-2, 1996, pp. 395-406. doi:10.1016/S0378-4371(96)00271-3

[8]   C. Tsallis, “Possible Generalization of Boltzmann-Gibbs Statistics,” Journal of Statistical Physics, Vol. 52, 1988, pp. 479-487. doi:10.1007/BF01016429

[9]   E. M. F. Curado and C. Tsallis, “Generalized Statistical Mechanics: Connection with Thermodynamics,” Journal of Physics A: Mathematical and General, Vol. 24, No. 2, 1991, p. L69; Journal of Physics A: Mathematical and General, Vol. 24, No. 4, 1992, p. 1019 (Corrigendum). doi:10.1088/0305-4470/25/4/038

[10]   M. A. Moret, P. G. Pascutti, P. M. Bisch and K. C. Mundim, “Stochastic Molecular Optimization Using Generalized Simulated Annealing,” Journal of Computational Chemistry, Vol. 19, No. 6, 1998, pp. 647-657. doi:10.1002/(SICI)1096-987X(19980430)19:6<647::AID-JCC6>3.0.CO;2-R

[11]   M. A. Moret, P. M. Bisch, K. C. Mundim and P. G. Pascutti, “New Stochastic Strategy to Analyze Helix Folding,” Biophysical Journal, Vol. 82, No. 3, 2002, pp. 1123-1132. doi:10.1016/S0006-3495(02)75471-4

[12]   L. E. Espinola, R. Gargano, K. C. Mundim and J. J. Soares Neto, “The Na+ HF Reactive Probabilities Calculations Using Two Different Potential Energy Surfaces,” Chemical Physics Letters, Vol. 361, No. 3-4, 2002, pp. 271-276. doi:10.1016/S0009-2614(02)00924-7

[13]   A. F. A. Vilela, J. J. Soares Neto, K. C. Mundim, M. S. P. Mundim and R. Gargano, “Fitting Potential Energy Surface for Reactive Scattering Dynamics through Generalized Simulated Annealing,” Chemical Physics Letters, Vol. 359, No. 5-6, 2002, pp. 420-427. doi:10.1016/S0009-2614(02)00597-3

[14]   K. C. Mundim, T. J. Lemaire and A. Bassrei, “Optimization of Non-Linear Gravity Models through Generalized Simulated Annealing,” Physica A, Vol. 252, No. 3-4, 1998, pp. 405-416. doi:10.1016/S0378-4371(97)00634-1

[15]   K. C. Mundim and D. E. Ellis, “Stochastic Classical Molecular Dynamics Coupled to Functional Density Theory: Applications to Large Molecular Systems,” Brazilian Journal of Physics, Vol. 29, No. 1, 1999, pp. 199-214. doi:10.1590/S0103-97331999000100018

[16]   D. E. Ellis, K. C. Mundim, D. Fuks, S. Dorfman and A. Berner, “Interstitial Carbon in Copper: Electronic and Mechanical Properties,” Philosophical Magazine Part B, Vol. 79, No. 10, 1999, pp. 1615-1630.

[17]   S. Dorfman, D. Fuks, L. A. C. Malbouisson, K. C. Mundim and D. E. Ellis, “Influence of Many-Body Interactions on Resistance of a Grain Boundary with Respect to a Sliding Shift,” International Journal of Quantum Chemistry, Vol. 90, No. 4-5, 2002, pp. 1448-1456. doi:10.1002/qua.10357

[18]   M. D. de Andrade, K. C. Mundim and L. A. C. Malbouisson, “GSA Algorithm Applied to Electronic Structure: Hartree-Fock-GSA Method,” International Journal of Quantum Chemistry, Vol. 103, No. 5, 2005, pp. 493-499. doi:10.1002/qua.20580

[19]   M. D. de Andrade, K. C. Mundim, M. A. C. Nascimento and L. A. C. Malbouisson, “GSA Algorithm Applied to Electronic Structure II: UHF-GSA Method,” International Journal of Quantum Chemistry, Vol. 106, No. 13, 2006, pp. 2700-2705. doi:10.1002/qua.21080

[20]   M. D. de Andrade, M. A. C. Nascimento, K. C. Mundim, A. M. C. SOBRINHO and L. A. C. Malbouisson, “Atomic Basis Sets Optimization Using the Generalized Simulated Annealing Approach: New Basis Sets for the First Row Elements,” International Journal of Quantum Chemistry, Vol. 108, No. 13, 2008, pp. 2486-2498. doi:10.1002/qua.21666

[21]   S. P. Webb, T. Iordanov and S. Hammes-Shiffer, “Multiconfigurational Nuclearelectronic Orbital Approach: Incorporation of Nuclear Quantum Effects in Electronic Structure Calculations,” International Journal of Quantum Chemistry, Vol. 117, No. 9, 2002, pp. 4106-4118.

[22]   M. V. Pak, C. Swalina, S. P. Webb and S. Hammes-Shiffer, “Application of the Nuclear-Electronic Orbital Method to Hydrogen Transfer Systems: Multiple Centers and Multiconfigurational Wavefunctions,” Chemical Physics, Vol. 304, No. 1-2, 2004, pp. 227-236. doi:10.1016/j.chemphys.2004.06.009

[23]   C. Swalina, M. V. Pak and S. Hammes-Shiffer. “Analysis of the Nuclear-Electronic Orbital Method for Model Hydrogen Transfer Systems,” Journal of Chemical Physics, Vol. 123, No. 1, 2005, p. 14303. doi:10.1063/1.1940634

[24]   A. Reyes, M. V. Pak and S. Hammes-Shiffer, “Investigation of Isotope Effects with the Nuclear-Electronic Orbital Approach,” Journal of Chemical Physics, Vol. 123, No. 6, 2005, p. 64104. doi:10.1063/1.1990116

[25]   J. H. Skone, M. V. Pak and S. Hammes-Shiffer, “Nuclear-Electronic Orbital Nonorthogonal Configuration Interaction Approach,” Journal of Chemical Physics, Vol. 123, No. 13, 2005, p. 134108. doi:10.1063/1.2039727

[26]   C. Swalina, M. V. Pak, A. Chakraborty and S. Hammes-Shiffer, “Explicit Dynamical Electron-Proton Correlation in the Nuclear-Electronic Orbital Framework,” Journal of Chemical Physics A, Vol. 110, No. 33, 2006, pp. 9983-9987. doi:10.1021/jp0634297

[27]   C. C. J. Roothaan, “New Developments in Molecular Orbital Theory,” Reviews of Modern Physics, Vol. 23, No. 2, 1951, pp. 69-89. doi:10.1103/RevModPhys.23.69

[28]   J. A. Pople and R. K. Nesbet, “Self-Consistent Orbitals for Radicals,” Journal of Chemical Physics, Vol. 22, No. 3, 1954, pp. 571-572. doi:10.1063/1.1740120

[29]   D. B. Cook, “Handbook of Computational Chemistry,” Oxford University Press, Oxford, 1998, p. 671.

[30]   A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory,” Dover Publications, New York, 1996, Appendix C, pp. 444.

[31]   W. H. Adams, “Stability of Hartree-Fock States,” Physical Review, Vol. 127, No. 5, 1962, pp. 1650-1658. doi:10.1103/PhysRev.127.1650

[32]   R. E. Stanton, “Multiple Solutions to the Hartree-Fock Problem I. General Treatment of Two-Electron Closed-Shell Systems,” Journal of Chemical Physics, Vol. 48, No. 1, 1968, pp. 258-262. doi:10.1063/1.1667913

[33]   J. C. Facelli and R. H. Contreras, “A General Relation between the Intrinsic Convergence Properties of SCF Hartree-Fock Calculations and the Stability Conditions of Their Solutions,” Journal of Chemical Physics, Vol. 79, No. 7, 1983, pp. 3421-3423. doi:10.1063/1.446190

[34]   L. A. C. Malbouisson and J. D. M. Vianna, “An Algebraic Method for Solving Hartree-Fock-Roothaan Equations,” Journal of Chemical Physics, Vol. 87, 1990, pp. 2017-2025.

[35]   R. M. Teixeira Filho, L. A. C. Malbouisson and J. D. M. Vianna, “An Algebraic Method for Solving Hartree-Fock Equations II. Open-Shell Molecular Systems,” Journal of Chemical Physics, Vol. 90, No. 10, 1993, pp. 1999-2005.

[36]   L. E. Dardenne, N. Makiuchi, L. A. C. Malbouisson and J. D. M. Vianna, “Multiplicity, Instability, and SCF Convergence Problems in Hartree-Fock Solutions,” Journal of Quantum Chemistry, Vol. 76, No. 5, 2000, pp. 600-610. doi:10.1002/(SICI)1097-461X(2000)76:5<600::AID-QUA2>3.0.CO;2-3

[37]   K. N. Kudin, G. E. Scuseria and E. Cancès, “A Black-Box Self-Consistent Field Convergence Algorithm: One Step Closer,” Journal of Chemical Physics, Vol. 116, No. 19, 2002, pp. 8255-8261. doi:10.1063/1.1470195

[38]   K. P. Huber and G. Herzberg, “Constants of Diatomic Molecules,” Van Nostrand, New York, 1979.

[39]   M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, “General Atomic and Molecular Electronic Structure System,” Journal of Computational Chemistry, Vol. 14, No. 11, 1993, pp. 1347-1363. doi:10.1002/jcc.540141112

[40]   P. Pulay, “Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration,” Chemical Physics Letters, Vol. 73, No. 2, 1980, pp. 393-398. doi:10.1016/0009-2614(80)80396-4

[41]   P. Pulay, “Improved SCF Convergence Acceleration,” Journal of Computational Chemistry, Vol. 3, No. 4, 1982, pp. 556-560. doi:10.1002/jcc.540030413

[42]   R. McWeeny, “Methods of Molecular Quantum Mechanics,” 2th Edition, Academic Press, London, 1978, p. 255.

 
 
Top