AM  Vol.3 No.10 A , October 2012
Optimization of Extrusion Process for Producing High Antioxidant Instant Amaranth (Amaranthus hypochondriacus L.) Flour Using Response Surface Methodology
ABSTRACT
The objective of this research was to determine the best combination of extrusion process variables for the production of a high antioxidant extruded amaranth flour (EAF) suitable to elaborate a nutraceutical beverage. Extrusion operation conditions were obtained from a factorial combination of process variables: Extrusion temperature (ET, 70℃ - 130?℃) and screw speed (SS, 100 - 220 rpm). Response surface methodology was employed as optimization technique; both the numeric and graphical methods were applied to obtain maximum values for response variables [Antioxidant capacity (AoxC) and water solubility index (WSI)]. The best combination of extrusion process variables was: Extrusion tem- perature (ET) = 130℃/Screw speed (SS) = 124 rpm. The raw amaranth flour (RAF) and optimized extruded amaranth flour (EAF) had an antioxidant activity of 3475 and 3903 μmol Trolox equivalents/100 g sample (dw), respectively. A 200 mL portion of the beverage prepared with 22 g of optimized EAF contained 3.16 g proteins, 1.09 g lipids, 17.39 g carbohydrates and 92 kcal. This portion covers 25.3% and 16.9% of the daily protein requirements for children 1-3 and 4 - 8 years old, respectively. A 200 mL portion of the beverage from optimized EAF contributes with 15.5% - 25.5% of the recommended daily intake for antioxidants, respectively. The nutraceutical beverage was evaluated with an average acceptability of 8.4 (level of satisfaction between “I like it” and “I like it extremely”) and could be used for health promotion and disease prevention as an alternative to beverages with low nutritional/nutraceutical value.

Cite this paper
J. Milán-Carrillo, A. Montoya-Rodríguez, R. Gutiérrez-Dorado, X. Perales-Sánchez and C. Reyes-Moreno, "Optimization of Extrusion Process for Producing High Antioxidant Instant Amaranth (Amaranthus hypochondriacus L.) Flour Using Response Surface Methodology," Applied Mathematics, Vol. 3 No. 10, 2012, pp. 1516-1525. doi: 10.4236/am.2012.330211.
References
[1]   B. Salcedo-Chávez, J. A. Osuna-Castro, F. Guevara-Lara, J. Domínguez-Domínguez and O. Paredes-López, “Optimization of the Isoelectric Precipitation Method to Obtain Protein Isolates from Amaranth (Amaranthus cruentus) Seeds,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 22, 2002, pp. 6515-6520. doi:10.1021/jf020522t

[2]   M. Bodroza-Solarov, B. Filipcev, Z. Kevresan, A. Mandic and O. Simurina, “Quality of Bread Supplemented with Popped Amaranthus cruentus Grain,” Journal of Food Processing Engineering, Vol. 31, No. 5, 2007, pp. 602-618. doi:10.1111/j.1745-4530.2007.00177.x

[3]   B. E. Berganza, A. W. Morán, G. Rodríguez, N. M. Coto, M. Santamaría and R. Bressani, “Effect of Variety and Location on the Total Fat, Fatty Acids and Squalene Content of Amaranth,” Plant Foods for Human Nutrition, Vol. 58, No. 3, 2003, pp. 1-6. doi:10.1023/B:QUAL.0000041143.24454.0a

[4]   B. Pedersen, K. E. B. Knudsen and B. O. Eggum, “The Nutritional Value of Amaranth Grain (Amaranthus caudatus) Energy and Fibre of Raw and Processed Grain,” Plant Foods for Human Nutrition, Vol. 40, No. 1, 1990, pp. 61-71. doi:10.1007/BF02193780

[5]   P. Whittaker and M. O. Ologunde, “Study of Iron Bioa-Vailability in a Native Nigerian Grain Amaranth Cereal for Young Children, Using a Rat Model,” Cereal Chemistry, Vol. 67, No. 5, 1990, pp. 505–508.

[6]   H. A. Pedersen, “Synthesis and Quantitation of Six Phenolic Amides in Amaranthus spp,” Journal of Agricultural and Food Chemistry, Vol. 58, No. 10, 2010, pp. 6306-6631. doi:10.1021/jf100002v

[7]   L. Alvarez-Jubete, E. K. Arendt and E. Gallagher, “Nutritive Value of Pseudocereals and Their Increasing Use as Functional Gluten Free Ingredients,” International Journal of Food Science and Nutrition, Vol. 60, No. 4, 2009, pp. 240-257. doi:10.1080/09637480902950597

[8]   A. Chaturvedi, G. Sarojini, N. Nirmalammay and D. Satyanarayana, “Glycemic Index of Grain Amaranth, Wheat and Rice in NIDDM Subjects,” Plant Foods for Human Nutrition, Vol. 50, No. 2, 1997, pp. 171-178. doi:10.1007/BF02436036

[9]   J. Burri, F. Dionisi, M. Allan and P. Lambelet, “Choles-Terol-Lowering Properties of Amaranth Grain and Oil in Hamsters,” International Journal of Vitamins and Nutrition Research, Vol. 73, 2003, pp. 39-47. doi:10.1024/0300-9831.73.1.39

[10]   D. H. Shin, H. J. Heo, Y. J. Lee and H. K. Kim, “Amaranth Squalene Reduces Serum and Liver Lipid Levels in Rats Fed a Cholesterol Diet,” British Biomedicine Science, Vol. 61, No. 1, 2004, pp. 11-14.

[11]   D. M. Martirosyan, L. D. Miroshnichenko, S. N. Kulakova, A. V. Pogojeva and V. I. Zoloedov, “Amaranth Oil Application for Coronary Heart Disease and Hypertension,” Lipids in Health and Disease, Vol. 6, No. 1, 2007, pp. 1-12. doi:10.1186/1476-511X-6-1

[12]   H. Gambus, F. Gambus, D. Pastuszka, P. Wrona, R. Ziobro, R. Sabat, B. Mickowska, A. Nowotna and M. Sikora, “Quality of Gluten Free Supplemented Cakes and Biscuits,” International Journal of Food Science and Nutrition, Vol. 60, No. 4, 2009, pp. 31-50. doi:10.1080/09637480802375523

[13]   M. Markowski, A. Ratajski, H. Konopko, P. Zapotoczny and K. Majewska, “Rheological Behavior of Hot-AirPuffed Amaranth Seeds,” International Journal of Food Properties, Vol. 9, 2006, pp. 195-203. doi:10.1080/10942910600596076

[14]   P. Zapotoczny, M. Markowski, K. Majewska, A. Ratajski and H. Konopko, “Effect of Temperature on the Physical, Functional, and Mechanical Characteristics of Hot-Air-Puffed Amaranth Seeds,” Journal of Food Engineering, Vol. 76, No. 4, 2006, pp. 469-476. doi:10.1016/j.jfoodeng.2005.05.045

[15]   H. D. Sánchez, R. J. González, C. A. Osella, R. L. Torres and M. A. G. de la Torre, “Elaboración de Pan Sin Gluten Con Harinas de Arroz Extrudidas,” Ciencia y Tecnología Alimentaria, Vol. 6, 2008, pp. 109-116.

[16]   R. Gutiérrez-Dorado, A. E. Ayala-Rodríguez, J. Mi-lán-Carrillo, J. López-Cervantes, J. A. Garzón-Tiznado, J. A. López-Valenzuela, O. Paredes-López and C. Re-yes-Moreno, “Technological and Nutritional Properties of Flours and Tortillas from Nixtamalized and Extruded Quality Protein Maize (Zea mays L.),” Cereal Chemistry, Vol. 85, No. 6, 2008, pp. 808-816. doi:10.1094/CCHEM-85-6-0808

[17]   T. Vasanthan, J. Yeung and R. Hoover, “Dextrinization of Starch in Barley Flours with Thermostable Alpha-Amylase by Extrusion Cooking,” Starch/Starke, Vol. 53, No. 12, 2001, pp. 616-622. doi:10.1002/1521-379X(200112)53:12<616::AID-STAR616>3.0.CO;2-M

[18]   O. Paredes-López, F. Guevara-Lara and L. A. Bello-Pérez, “Los Alimentos Mágicos de las Culturas Indígenas Mesoamericanas,” Fondo de Cultura Económica, México, 2006, pp. 32-34, 81-88.

[19]   E. L. Contreras, J. O. Jaimez, J. C. R. Soto, A. O. Casta?eda and J. M. A?orve, “Aumento del Contenido Proteico de una Bebida a Base de Amaranto (Amaranthus Hypochon-Driacus),” Revista Chilena de Nutrición, Vol. 38, No. 3, 2011, pp. 322-330. doi:10.4067/S0717-75182011000300008

[20]   M. A. Heckman, K. Sherry and E. G. de Mejía, “Energy Drinks: An Assessment of Their Market Size, Consumer Demographics, Ingredient Profile, Funcionality, and Regulations in the United States,” Comprehensive Reviews in Food Science and Food Safety, Vol. 9, No. 3, 2010, pp. 303-331. doi:10.1111/j.1541-4337.2010.00111.x

[21]   A. A. Khuri and J. A. Cornell, “Response Surfaces: Designs and Analyses,” Marcel Dekker Inc., New York, 1987, pp. 1-17, 254.

[22]   J. Fichtali, F. R. Van De Voort and A. I. Khuri, “Mul-tiresponse Optimization of Acid Casein Production,” Journal of Food Process Engineering, Vol. 12, No. 4, 1990, pp. 247-258. doi:10.1111/j.1745-4530.1990.tb00053.x

[23]   J. M. Vargas-Lopez, O. Paredes-Lopez and E. Espitia, “Evaluation of Lime Heat Treatment on Physicochemical Properties of Amaranth by Response Surface Methodology,” Cereal Chemistry, Vol. 67, No. 5, 1990, pp. 417-421.

[24]   J. Milán-Carrillo, R. Gutierrez-Dorado, J. X. K. Perales-Sánchez, E. O. Cuevas-Rodr?guez, B. Ramirez-Wong and C. Reyes-Moreno, “The Optimization of the Extrusion Process When Using Maize Flour with a Modified Amino Acid Profile for Making Tortillas,” International Journal of Food Science and Technology, Vol. 41, No. 7, 2006, pp. 727-736. doi:10.1111/j.1365-2621.2005.00997.x

[25]   J. Milán-Carrillo, C. Reyes-Moreno, I. L. Camacho-Hernandez and O. Rouzaud-Sandez, “Optimisation of Extrusion Process to Transform Hardened Chick-Peas (Cicer arietinum L.) into a Useful Product,” Journal of the Science of Food and Agriculture, Vol. 82, No. 14, 2002, pp. 1718-1728. doi:10.1002/jsfa.1242

[26]   AOAC, “Official Methods of Analysis,” 16th Edition, Association of Official Analytical Chemists, Washington DC, 1999.

[27]   J. M. Vargas-López, O. Paredes-López and B. Ramí-rez-Wong, “Physicochemical Properties of Extrusion-Cooked Amaranth under Alkaline Conditions,” Cereal Chemistry, Vol. 68, No. 6, 1991, pp. 610-613.

[28]   Y. S. Queiroz, R. A. M. Soares, V. D. Capriles, E. A. F. S. Torres and J. A. G. Areas, “Efeito DO Processamento na Atividade Antioxidante DO Gr?o de Amaranto (Amaranthus cruentus L. BRS-Alegria),” Archivos Latinoamericanos de Nutrición, Vol. 59, No. 4, 2009, pp. 419-424.

[29]   V. Dewanto, X. Wu and R. H. Liu, “Processed Sweet Corn Has Higher Antioxidant Activity,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 17, 2002, pp. 4959-4964. doi:10.1021/jf0255937

[30]   K. F. Adom and R. H. Liu, “Antioxidant Activity of Grains,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 21, 2002, pp. 6182-6187. doi:10.1021/jf0205099

[31]   K. K. Adom, M. E. Sorrells and R. H. Liu, “Phytochemical Profiles and Antioxidant Activity of Wheat Varieties,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 26, 2003, pp. 7825-7834. doi:10.1021/jf030404l

[32]   B. Ou, M. Hampsch-Woodill and R. L. Prior “Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluo-Rescent Probe,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 10, 2001, pp. 4619-4626. doi:10.1021/jf010586o

[33]   V. L. Singleton, R. Orthofer and R. M. Lamuela-Raventos, “Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent,” Methods in Enzymology, Vol. 299, 1999, pp. 152-178. doi:10.1016/S0076-6879(99)99017-1

[34]   R. A. Anderson, H. F. Conway, V. F. Pfeifer and E. L. Griffin, “Gelatinizacion of Corn Grits by Rool and Extrusion Cooking,” Cereal Science Today, Vol. 14, No. 11, 1969, pp. 4-12.

[35]   R. H. Myers, “Response Surfaces Methodology,” Allyn and Bacon, Boston, 1971, pp. 26-106.

[36]   Design Expert, “Version 7.0.0. Stat-Ease,” Design Expert Inc., Minneapolis, 2005.

[37]   M. Jahani, M. Alizadeh, M. Pirozifard and A. Qudsevali, “Optimization of Enzymatic Degumming Process for RBO Using Response Surface Methodology,” LWT— Food Science and Technology, Vol. 41, No. 10, 2008, pp. 1892-1898.

[38]   S. R. De la Vara and D. J. Domínguez, “Métodos de Superficie De Respuesta; Un Estudio Comparativo,” Revista de Matemáticas Teoríay Aplicaciones, Vol. 1, No. 1, 2002, pp. 47-65.

[39]   E. Larmond, “Laboratory Methods for Sensory Evaluation of Foods,” Department of Agriculture, Ottawa, Vol. 74, 1977.

[40]   R. H. Myers and D. C. Montgomery, “Response Surface Methodology: Product and Process Optimization Using Designed Experiments,” 2nd Edition, John Wiley & Sons, New York, 2002.

[41]   P. Colonna, J. Tayeb and C. Mercier, “Extrusion Cooking of Starch and Starchy Products,” In: C. Mercier, P. Linko and J. M. Harper, Eds., Extrusion Cooking, American Association of Cereal Chemists, St. Paul, 1989, pp. 247-319.

[42]   C. Fares and V. Menga, “Effects of Toasting on the Carbohydrate Profile and Antioxidant Properties of Chickpea (Cicer arietinum L.) Flour Added to Durum Wheat,” Food Chemistry, Vol. 131, No. 4, 2012, pp. 1140-1148. doi:10.1016/j.foodchem.2011.09.080

[43]   R. H. Liu, “Whole Grain Phytochemicals and Health,” Journal of Cereal Science, Vol. 46, No. 3, 2007, pp. 207-219. doi:10.1016/j.jcs.2007.06.010

[44]   G. H. Cao and R. L. Prior, “Measurement of Oxygen Radical Absorbance Capacity in Biological Samples,” Methods in Enzymology, Vol. 299, 1999, pp. 50-62. doi:10.1016/S0076-6879(99)99008-0

[45]   G. Bank and A. Schauss, “Antioxidant Testing: An ORAC Update,” Nutraceuticals World, 2004. http://www.nutraceuticalsworld.com/march042.htm

[46]   USDA, “Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods,” United States Department of Agriculture, Beltsville, 2007, pp. 1-34.

[47]   USDA, “Antioxidants and Health,” ACES Publications, Beltsville, 2010, p. 4.

[48]   T. A. D. C. Ferreira and J. A. G. Areas, “Protein Biological Value of Extruded, Raw and Toasted Amaranth Grain,” Pesquisa Agropecuaria Tropical, Vol. 34, No. 1, 2004, pp. 53-59.

[49]   R. N. Chávez-Jáuregui, M. E. M. Silvia and J. A. G. Areas, “Extrusion Cooking Process for Amaranth (Amaranthus caudatus),” Journal of Cereal Science, Vol. 65, No. 6, 2000, pp. 1009-1015.

[50]   C. R. Tacora, M. G. Luna, P. R. Brao, H. J. Mayta, Y. M. Choque and Q. V. Iba?ez. “Efecto de la PRESIóN de Ex-pansion por Explosion Temperatura de Tostado en Algunas Características Funcionales Fisicoquímicas de Dos Variedades de Ca?ihua (Chenopodium pallidicaule Aellen),” Journal de Ciencia Tecnología Agraria, Vol. 2, No. 1, 2010, pp. 188-198.

[51]   R. Reynoso-Camacho, M. C. Ríos-Ugalde, I. Torres-Pacheco, J. A. Acosta-Gallegos, A. C. Palo-mino-Salinas, M. Ramos-Gómez, E. González-Jasso and S. H. Guzmán-Maldonado, “El Consumo de Frijol Común (Phaseolus vulgaris L.) su Efecto Sobre el Cáncer de Colon en Ratas Sprague-Dauley,” Agricultura Técnica de México, Vol. 33, No. 1, 2007, pp. 43-52.

 
 
Top