AJPS  Vol.3 No.10 , October 2012
Antinutritive Compounds in Twelve Camelina sativa Genotypes
Abstract: Camelina sativa is an oilseed crop becoming important in North America and Europe for biodiesel production. The use of Camelina flours in animal diet may be limited by antinutritive compounds. The content of glucosinolates, phytic acid, sinapine and condensed tannins was evaluated in twelve accessions of Camelina sativa. All compounds showed significant differences among genotypes. Only the concentration of glucosinolates in the flour deserves attention, while the content of phytic acid, sinapine and condensed tannins are to acceptable levels. Camelina showed the presence of three different glucosinolates (GSL1, GSL2 and GSL3) in the flour, with differences among genotypes regarding the relative abundance of each glucosinolate. The content of glucosinolates is inversely correlated with that of sinapine. The glucosinolate content in Camelina flour has to be reduced to increase the use of this flour in animal diet, but avoiding altering the sinapine content.
Cite this paper: R. Russo and R. Reggiani, "Antinutritive Compounds in Twelve Camelina sativa Genotypes," American Journal of Plant Sciences, Vol. 3 No. 10, 2012, pp. 1408-1412. doi: 10.4236/ajps.2012.310170.

[1]   R. Dulmaine, “Camelina: A Better Source of Biofuel?” 2008.

[2]   European Commission, “Directive 2008/76/CE”, 2008.

[3]   S. R. Schill, “Camelina Meal Approved for Feedlot Cattle,” Biodiesel Magazine, 2010.

[4]   J. Zubr, “Qualitative Variation of Camelina sativa Seed from Different Locations,” Industrial Crops and Products, Vol. 17, No. 3, 2003, pp. 161-169. doi:10.1016/S0926-6690(02)00091-2

[5]   E. L. Ryh?nen, S. Perttil?, T. Tupasela, J. Valaja, C. Eriksson and K. Larkka, “Effect of Camelina sativa Expeller Cake on Performance and Meat Quality Broilers,” Journal of the Science of Food and Agriculture, Vol. 87, No. 8, 2007, pp. 1489-1494. doi:10.1002/jsfa.2864

[6]   J. Zubr, “Carbohydrates, Vitamins and Minerals of Camelina sativa Seed,” Nutrition & Food Science, Vol. 40, No. 5, 2010, pp. 523-531. doi:10.1108/00346651011077036

[7]   European Food Safety Authority, “Glucosinolates as Undesirable Substances in Animal Feed,” EFSA Journal, Vol. 590, 2008, pp. 1-76.

[8]   E. J. Butler, A. W. Pearson, A. W. and G. R. Fenwick, “Problems Which Limit the Use of Rapeseed Meal as a Protein Source in Poultry Diets,” Journal of the Science of Food and Agriculture, Vol. 33, No. 9, 1982, pp. 866-875. doi:10.1002/jsfa.2740330909

[9]   U. Schlemmer, W. Fr?lich, R. M. Prieto and F. Grases, “Phytate in Foods and Significance for humans: Food Sources, Intake, Processing, Bioavailability, Protective Role and Analysis,” Molecular Nutrition & Food Research, Vol. 53, No. 2, 2009, pp. 330-375. doi:10.1002/mnfr.200900099

[10]   R. Amarowicz, I. Estrella, T. Hernández, S. Robredo, A. Troszynska, A. Kosinska and R. B. Pegg, “Free Radical-Scavenging Capacity, Antioxidant Activity, and Phenolic Composition of Green Lentil (Lens culinaris)”, Food Chemistry, Vol. 121, No. 3, 2010, pp. 705-711. doi:10.1016/j.foodchem.2010.01.009

[11]   R. Russo and R. Reggiani, “Rapid Separation of Seed Glucosinolates from Camelina sativa by Thin Layer Chromatography,” International Journal of Plant Biology, 2012, in press.

[12]   R. Cai and S. D. Arnt?eld, “A Rapid High-Performance Liquid Chromatographic Method for the Determination of Sinapine and Sinapic Acid in Canola Seed and Meal,” Journal of the American Oil Chemists Society, Vol. 78, No. 9, 2001, pp. 902-910. doi:10.1007/s11746-001-0362-4

[13]   S. Clausen, L. M. Larsen and A. Pl?ger, “Aromatic Choline Esters in Rapeseed,” In: H. Sorensen, Ed., Martinus Nijhoff, Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, 1985, pp. 61-71.

[14]   A .R. deBoland, G. B. Garner and B. L. O’Dell, “Identification and Properties of Phytate in Cereal Grains and Oilseed Products,” Journal of Agricultural and Food Chemistry, Vol. 23, No. 6, 1975, pp. 1186-1189. doi:10.1021/jf60202a038

[15]   P. S. Chen, T. Y. Toribara and H. Warner, “Microdetermination of Phosphorus,” Analytical Chemistry, Vol. 28, No. 11, 1956, pp. 1756-1758. doi:10.1021/ac60119a033

[16]   V. Raboy and D. B. Dickinson, “Effect of Phosphorus and Zinc Nutrition on Soybean Seed Phytic Acid and Zinc,” Plant Physiology, Vol. 75, No. 4, 1984, pp. 1094-1098. doi:10.1104/pp.75.4.1094

[17]   B. Matth?us and J. Zubr, “Variability of Specific Components in Camelina sativa Oilseed Cakes,” Industrial Crops and Products, Vol. 12, No. 1, 2000, pp. 9-18. doi:10.1016/S0926-6690(99)00040-0

[18]   A. Schuster and W. Friedt, “Glucosinolate Content and Composition as Parameters of Quality of Camelina Seed,” Industrial Crops and Products, Vol. 7, No. 2-3, 1998, pp. 297-302. doi:10.1016/S0926-6690(97)00061-7

[19]   M. D. Omirou, K. K. Papadopoulou, I. Papastylianou, M. Constantinou, D. G. Karpouzas, I. Asimakopoulos and C. Ehaliotis, “Inpact of Nitrogen and Sulfur Fertilization on the Composition of Glucosinolates in Relation to Sulfur Assimilation in Different Plant Organs of Broccoli”, Journal of Agricultural and Food Chemistry, Vol. 57, No 20, 2009, pp. 9408-9417. doi:10.1021/jf901440n

[20]   J. P. Sang and P. A. Salisbury, “Glucosinolate Profiles of International Rapeseed Lines (Brassica napus and Brassica campestris),” Journal of the Science of Food and Agriculture, Vol. 45, 1988, pp. 255-261. doi:10.1002/jsfa.2740450308

[21]   J. M. Bell, M. O. Keith and D. S. Hutcheson, “Nutritional Evaluation of Very Low Glucosinolate Canola Meal,” Canadian Journal of Animal Science, Vol. 71, No. 2, 1991, pp. 497-506. doi:10.4141/cjas91-059

[22]   C. Hurthaud and J. L. Peyraud, “Effects of Feeding Camelina (Seeds or Meal) on Milk Fatty Acid Composition and Butter Spreadability,” Journal of Dairy Science, Vol. 90, No. 11, 2007, pp. 5134-5145. doi:10.3168/jds.2007-0031

[23]   A. Y. Pekel, P. H. Patterson, R. M. Hulet, N. Acar, T. L. Cravener, D. B. Dowler and J. M. Hunter, “Dietary Camelina Meal versus Flaxseed with and without Supplemental Copper,” Poultry Science, Vol. 88, No. 11, 2009, pp. 2392-2398. doi:10.3382/ps.2009-00051

[24]   A. E. Aziza, N. Quezada and G. Cherian, “Feeding Camelina sativa Meal to Meat-Type Chickens: Effect on Production Performance and Tissue Fatty Acid Composition,” The Journal of Applied Poultry Research, Vol. 19, No. 2, 2010, pp. 157-168. doi:10.3382/japr.2009-00100

[25]   P. Kwanyuen and J. W. Burton, “A Simple and Rapid Procedure for Phytate Determination in Soybeans and Soy Products,” Journal of the American Oil Chemists Society, Vol. 82, No. 2, 2005, pp. 81-85. doi:10.1007/s11746-005-1046-9

[26]   B. Matth?us, “Antinutritive Compounds in Different Oilseeds,” Fett/Lipid, Vol. 99, No. 5, 1997, pp. 170-174.

[27]   V. L. Singleton, “Naturally Occurring Food Toxicants: Phenolic Substances of Plant Origin Common in Foods,” Advances in Food Research, Vol. 27, 1981, pp. 149-242. doi:10.1016/S0065-2628(08)60299-2

[28]   B. Matth?us and L. G. Angelini, “Anti-Nutritive Constituents in Oilseed Crops from Italy,” Industrial Crops and Products, Vol. 21, No. 1, 2005, pp. 89-99. doi:10.1016/j.indcrop.2003.12.021