ACES  Vol.2 No.4 , October 2012
Sensitive Voltammetric Determination of Mitoxantrone by Using CS-Dispersed Graphene Modified Glassy Carbon Electrodes
Author(s) Bin Hong, Qiong Cheng*
A novel CS-dispersed graphene modified glassy carbon electrode was fabricated. Study electrochemical characteristics of mitoxantrone in the CS-dispersed graphene modified electrode by cyclic voltammetry and other methods, by selecting and optimizing the various parameters to create a new electrochemical method for the determination of mitoxantrone. The linear range of the oxidation peak current is from 6×10–10 to 1 ×10–6 mol/l in this method, after 2.5 mins open-circuit accumulation, the limit of detection is 2×10–10 mol/l. After 10 parallel determinations, the relative standard deviation was 3.7% that the concentration of mitoxantrone was 1×10–8 mol/l. The modified electrode has been successfully applied for the assay of mitoxantrone in human urine samples.

Cite this paper
B. Hong and Q. Cheng, "Sensitive Voltammetric Determination of Mitoxantrone by Using CS-Dispersed Graphene Modified Glassy Carbon Electrodes," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 453-460. doi: 10.4236/aces.2012.24055.
[1]   K. S. Novoselov, A. K. Gein, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896

[2]   A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature Materials, Vol. 6, 2007, pp. 183-191. doi:10.1038/nmat1849

[3]   C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial,” Angewandte Chemie International Edition, Vol. 48, No. 42, 2009, pp. 7752-7777. doi:10.1002/anie.200952249

[4]   M. Pumera, “Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage,” The Chemical Record, Vol. 9, No. 4, 2009, pp. 211-223. doi:10.1002/tcr.200900008

[5]   W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, “Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?” Angewandte Chemie International Edition, Vol. 49, No. 12, 2010, pp. 2114-2138. doi:10.1002/anie.200903463

[6]   D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, “Processable Aqueous Dispersions of Grapheme Nanosheets,” Nature Nanotechnology, Vol. 3, 2008, pp. 101-105. doi:10.1038/nnano.2007.451

[7]   S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, 2006, pp. 282-286. doi:10.1038/nature04969

[8]   Y. X. Xu, H. Bai, G. W. Lu, C. Li and G. Q. Shi, “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” Journal of the American Chemical Society, Vol. 130, No. 18, 2008, pp. 5856-5857. doi:10.1021/ja800745y

[9]   R. Muszynski, B. Seger and P. V. J. Kamat, “Decorating Graphene Sheets with Gold Nanoparticles,” The Journal of Physical Chemistry C, Vol. 112, No. 14, 2008, pp. 5263-5266. doi:10.1021/jp800977b

[10]   C. M. Chen, Q.-H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P.-X. Hou, M. Z. Wang and H.-M. Cheng, “Self-Assembled Free-Standing Graphite Oxide Membrane,” Advanced Materials, Vol. 21, No. 29, 2009, pp. 3007-3011. doi:10.1002/adma.200803726

[11]   H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Advanced Materials, Vol. 20, No. 18, 2008, pp. 3557-3561. doi:10.1002/adma.200800757

[12]   J. W. Wang, S. L. Yang, D. Y. Guo, P. Yu, D. Li, J. S. Ye and L. Q. Mao, “Comparative Studies on Electrochemical Activity of Graphene Nanosheets and Carbon Nanotubes,” Electrochemistry Communications, Vol. 11, No. 10, 2009 pp. 1892-1895. doi:10.1016/j.elecom.2009.08.019

[13]   W. J. Lin, C. S. Liao, J. H. Jhang and Y. C. Tsai, “Graphene Modified Basal and Edge Plane Pyrolytic Graphite Electrodes for Electrocatalytic Oxidation of Hydrogen Peroxide and Beta-Nicotinamide Adenine Dinucleotide,” Electrochemistry Communications, Vol. 11, No. 11, 2009, pp. 2153-2156. doi:10.1016/j.elecom.2009.09.018

[14]   Y. Wang, Y. Wan and D. Zhang, “Reduced Grapheme Sheets Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media,” Electrochemistry Communications, Vol. 12, No. 2, 2010, pp. 187-190. doi:10.1016/j.elecom.2009.11.019

[15]   X. P. Chen, H. Z. Ye and W. Z. Wang, “Electrochemiluminescence Biosensor for Glucose Based on Graphene/ Nafion/GOD Film Modified Glassy Carbon Electrode,” Electroanalysis, Vol. 20, No. 20, 2010, pp. 2347-2352. doi:10.1002/elan.201000095

[16]   P. Wu, S. A. Qian and Y. J. Hua, “Direct Electrochemistry of Glucose Oxidase Assembled on Graphene and Application to Glucose Detection,” Electrochimica Acta, Vol. 55, No. 28, 2010, pp. 8606-8614. doi:10.1016/j.electacta.2010.07.079

[17]   Y. Wang, Y. M. Li and L. H. Tang, “Application of Graphene-Modified Electrode for Selective Detection of Dopamine,” Electrochemistry Communications, Vol. 11, No. 4, 2009, pp. 889-892. doi:10.1016/j.elecom.2009.02.013

[18]   L. Tan, K.-G. Zhou, Y. H. Zhang, et al., “Nanomolar Detection of Dopamine in the Presence of Ascorbic Acid at Beta-Cyclodextrin/Graphene Nanocomposite Platform,” Electrochemistry Communications, Vol. 12, No. 4, 2010, pp. 557-560. doi:10.1016/j.elecom.2010.01.042

[19]   J. Li, S. J. Guo and Y. M. Zhai, “Nafion-Graphene Nanocomposite Film as Enhanced Sensing Platform for Ultrasensitive Determination of Cadmium,” Electrochemistry Communications, Vol. 11, No. 5, 2009, pp. 1085-1088. doi:10.1016/j.elecom.2009.03.025

[20]   J.-F. Wu, M.-Q. Xu and G.-C. Zhao, “Graphene-Based Modified Electrode for the Direct Electron Transfer of Cytochrome c and Biosensing,” Electrochemistry Communications, Vol. 12, No. 1, 2010, pp. 175-177. doi:10.1016/j.elecom.2009.11.020

[21]   J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3137-3140. doi:10.1021/nl8013007

[22]   M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Analytical Chemistry, Vol. 81, No. 14, 2009, pp. 5603-5613. doi:10.1021/ac900136z

[23]   K. M. Rentsch, R. A. Schwendener and E. H?nseler, “Determination of Mitoxant rone in Mouse Whole Blood and Different Tissues by High-Performance Liquid Chromatography,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 679, No. 1-2, 1996, pp. 185-192. doi:10.1016/0378-4347(96)00023-0

[24]   P. Guo, L. M. Ye, W. Z. Wu and T. S. Wu, “Determination of Antitumour Drug Mitoxantrone in Plasma Using HPLC Column Switching Technique,” Acta Pharmaceutica Sinica, Vol. 26, No. 5, 1991, pp. 367-369.

[25]   Q. Z. Zhou, C. Y. Wu, L. K. Zhang, N. Li and X. Y. He, “Determination of Mitoxantrone by Spectrophotometry,” Chinese Journal of Pharmaceutical Analysis, Vol. 17, No. 6, 1997, pp. 403-405.

[26]   H. Z. Song, M. F. Yang and Z. Y. Gu, “Adsorptive Behaviour of Mitoxantrone and Its Adsorptive Voltammeteic Determination,” Chinese Journal of Analytical Chemistry, Vol. 21, 1993, pp. 1285-1287.

[27]   M. D. Guo, “Study on Mitoxantrone Using Mercury Film Carbon Fiber Microelectrode by 1.5 Order Differential Stripping Voltammetry,” Chinese Analytical Sciences Acta, Vol. 11, 1995, pp. 46-48.

[28]   J. B. Hu and Q. L. Li, “Studies on the Voltammetric Behavior of Mitoxantrone and Its Application at the Ni/GC Modified Electrode,” Chemical Journal of Chinese Universities, Vol. 22, No. 3, 2001, pp. 380-384.

[29]   M. O. Brett, T. R. A.Macedo, D. Raimundo, M. H. Marques and S. H. P. Serrano, “Electrochemical Oxidation of Mitoxantrone at a Glassy Carbon Electrode,” Analytica Chimica Acta, Vol. 385, No. 1-3, 1999, pp. 401-408. doi:10.1016/S0003-2670(98)00807-1