Effects of Side-Chain on Conformational Characteristics of Poly(3,5-Dimethyl-Phenyl Acrylate) in Toluene at 40℃

Author(s)
Nasrollah Hamidi^{*},
Stanley Ihekweazu,
Christopher A. Wiredu,
Onize H. Isa,
Kevin Watley,
Christopher Rowe,
Briante’ Nimmons,
Alexis Prezzy,
Traniqua Govan,
Shane Scoville,
Quentin Hills,
Judith Salley

Affiliation(s)

Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC, USA.

Department of Civil and Mechanical Engineering Technology, South Carolina State University, Orangeburg, SC, USA.

North High School, North, SC, USA.

Orangeburg Wilkinson High School, Orangeburg, SC, USA.

Department of Biological and Physical Sciences, South Carolina State University, Orangeburg, SC, USA.

Department of Civil and Mechanical Engineering Technology, South Carolina State University, Orangeburg, SC, USA.

North High School, North, SC, USA.

Orangeburg Wilkinson High School, Orangeburg, SC, USA.

ABSTRACT

The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C_{∞} and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.

The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C

KEYWORDS

Intrinsic Viscosity; Poly(3, 5-Dimethyl-Phenyl Acrylate); Conformational Parameters; Rigidity Factor; Kuhn Statistical Length

Intrinsic Viscosity; Poly(3, 5-Dimethyl-Phenyl Acrylate); Conformational Parameters; Rigidity Factor; Kuhn Statistical Length

Cite this paper

N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville, Q. Hills and J. Salley, "Effects of Side-Chain on Conformational Characteristics of Poly(3,5-Dimethyl-Phenyl Acrylate) in Toluene at 40℃,"*Advances in Chemical Engineering and Science*, Vol. 2 No. 4, 2012, pp. 435-443. doi: 10.4236/aces.2012.24053.

N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville, Q. Hills and J. Salley, "Effects of Side-Chain on Conformational Characteristics of Poly(3,5-Dimethyl-Phenyl Acrylate) in Toluene at 40℃,"

References

[1] P. J. Flory, “Statistical Mechanics of Chain Molecules,” Interscience, New York, 1969.

[2] Z. Xu, N. Hadjichristidis and L. J. Fetterss, “Solution Properties and Chain Dimensions of Poly(n-Alkyl Methacrylates),” Macromolecules, Vol. 17, No. 11, 1984, pp. 2303-2306. doi:10.1021/ma00141a019

[3] L. Gargallo, N. Hamidi and D. Radic, “Synthesis, Solution Properties and Chain Flexibility of Poly(2,6-Dimethylphenyl Methacrylate),” Polymer, Vol. 31, No. 5, 1990, pp. 924-927. doi:10.1016/0032-3861(90)90057-6

[4] Y. Abe and P. J. Flory, “Configurational Statistics of 1,4-Polybutadiene Chains,” Macromolecules, Vol. 4, No. 2, 1971, pp. 219-230. doi:10.1021/ma60020a017

[5] H. Yamakawa and M. Fujii, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024

[6] M. Bohdanecky, “New Method for Estimating the Parameters of the Wormlike Chain Model from the Intrinsic Viscosity of Stiff-Chain Polymers,” Macromolecules, Vol. 16, No. 9, 1983, pp. 1483-1492. doi:10.1021/ma00243a014

[7] H. Morawetz, “Macromolecules in Solution,” Interscience Publishers, New York, 1958.

[8] E. Brandrup, H. Immergut and E. A. Grulke, Eds., “Polymer Handbook,” 4th Edition, John Wily & Sons, Inc. New York, 1999.

[9] M. L. Huggins, “The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration,” Journal of the American Chemical Society, Vol. 64, No. 11, 1942, pp. 2716-2718. doi:10.1021/ja01263a056

[10] E. O. Kraemer, “Molecular Weights of Celluloses and Cellulose Derivates,” Industrial & Engineering Chemistry, Vol. 30, No. 10, 1938, pp. 1200-1203. doi:10.1021/ie50346a023

[11] N. Hamidi, “Synthesis and Characterization of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C By Two-Angle Light-Scattering and Differential Pressure Viscometry,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.

[12] J. M. G. Cowie, “Polymers: Chemistry & Physics of Modern Materials,” 2nd Edition, Chapman & Hall, London, 1991, (1a) pp. 165, 191-192 and 219; (1b) p. 217; (1c) p. 218.

[13] P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, 1953, (2a) p. 27, (2b) p. 310, (3c) p. 617.

[14] H. Yamakawa, “Modern Theory of Polymer Solution,” Harper and Row Publishers, New York, 1971.

[15] N. Hamidi, L. Sealey and B. Hamidi, “Diluted Solution Properties of Poly (3,5-Dimethyl-Phenyl-Acrylate) in Toluene At 25?C and 30?C,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.

[16] N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville and Q. Hills, “Solution Viscosity of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C,” 63rd Southeaster Regional Meeting of American Chemical Society, Richmond, 26-29 October 2011.

[17] J. M. Barrales Rienda, C. Romero Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 2. Molecular Weight Dependence of the Intrinsic Viscosity in a Few Good Solvents,” Macromolecules, Vol. 16, 1983, p. 1940.

[18] W. R. Moore, “Viscosities of Dilute Polymer Solutions,” Progress in Polymer Science, Vol. 1, 1967, pp. 1-43. doi:10.1016/0079-6700(67)90001-9

[19] J. M. Barrales Rienda, C. R. Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 4. Cloud Points, θ Solvents, and Molecular Weight Dependence of Intrinsic Viscosity in nAlkyl Alcohols as θ Solvents,” Macromolecules, Vol. 16, No. 11, 1983, pp. 1707-1714. doi:10.1021/ma00245a006

[20] A. E. Tonelli, NMR Spectroscopy and Polymer Microstructure, the Conformational Connection,” VHC Publishers, New York, 1989, p. 56.

[21] Y. Miyaki, Y. Einaga, H. Fujita and M. Fukuda, “Flory’s Viscosity Factor for the System Polystyrene + Cyclohexane at 34.5?C,” Macromolecules, Vol. 13, No. 3, 1980, pp. 588-592. doi:10.1021/ma60075a021

[22] H. Yamakawa and M. Fuji, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024

[23] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolecules, Vol. 21, No. 1, 1988, pp. 165-171. doi:10.1021/ma00179a033

[24] A. Ka?tánek, S. Podzimek, J. Dostál, L. ?imek and M. Bohdaneck??y, “Estimation of Conformational Characteristics of Bisphenol-A Based Poly(Hydroxyethers),” Polymer, Vol. 41, No. 8, 2000, pp. 2865-2870. doi:10.1016/S0032-3861(99)00474-7

[25] M. Bohdaneck??y and M. Netopilík, “Note on the Application of the Yoshizaki-Nitta-Yamakawa Theory of the Intrinsic Viscosity of the Touched-Bead Model,” Die Makromolekulare Chemie, Rapid Communications, Vol. 14, No. 7, 1993, pp. 383-386. doi:10.1002/marc.1993.030140703

[26] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolekules, Vol. 21, No. 1, 1988, pp. 165-171.

[27] H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, 1971.

[28] H. Fujita, “Polymer Solutions,” Elsevier, Amsterdam, 1990.

[29] H. Yamakawa and W. H. Stockmayer, “Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects,” Journal of Chemical Physics, Vol. 57, No. 7, 1972, p. 2843. doi:10.1063/1.1678675

[30] T. Norisuye and H. Fujita, “Excluded-Volume Effects in Dilute Polymer Solutions. XIII. Effects of Chain Stiffness,” Polymer Journal, Vol. 14, No. 2, 1982, pp. 143-147. doi:10.1295/polymj.14.143

[31] H. Yamakawa and J. Shimada, “Stiffness and Excluded— Volume Effects in Polymer Chains,” Journal of Chemical Physics, Vol. 83, No. 5, 1985, pp. 2607-2611. doi:10.1063/1.449254

[32] J. Shimada and H. Yamakawa, “Statistical Mechanics of Helical Worm-Like chains. XV. Excluded-Volume Effects,” Journal of Chemical Physics, Vol. 85, No. 1, 1976, pp. 591-601.

[33] W. Burchard, “üBer den Einflu? der L?sungsmittel Auf die Struktur Linearer Makromoleküle. I,” Die Makromolekulare Chemie, Vol. 50, No. 1, 1961, p. 210. doi:10.1002/macp.1961.020500102

[34] W. H. Stockmayer and M. Fixman, “On the Estimation of Unperturbed Dimensions from Intrinsic Viscosities,” Journal of Polymer Science, Part C, No. 1, 1963, p. 137.

[35] M. Bohdaneck??y, J. Kovár and I. Fortel??y, “Partial Draining of Low-Molecular Weight Polymers with Flexible Chains,” Polymer, Vol. 20, No. 7, 1979, pp. 813-817.

[36] S. Lifson and I. Oppenheim, “Neighbor Interactions and Internal Rotations in Polymer Molecules. IV. Solvent Effect on Internal Rotations,” Journal of Chemical Physics, Vol. 33, No. 1, 1960, p. 109. doi:10.1063/1.1731064

[37] D. J. Joon, P. R. Sundarajan and P. J. Flory, “Conformational Characteristics of Polystyrene,” Macromolecules, Vol. 8, No. 6, 1975, pp. 776-783. doi:10.1021/ma60048a019

[38] T. Beha and L. Valko, “Theoretical Estimation of the Effect of Solvent on Unperturbed Dimensions: 1. Isotactic Poly(Vinyl Alcohol),” Polymer, Vol. 17, No. 4, 1976, pp. 298-302. doi:10.1016/0032-3861(76)90185-3

[1] P. J. Flory, “Statistical Mechanics of Chain Molecules,” Interscience, New York, 1969.

[2] Z. Xu, N. Hadjichristidis and L. J. Fetterss, “Solution Properties and Chain Dimensions of Poly(n-Alkyl Methacrylates),” Macromolecules, Vol. 17, No. 11, 1984, pp. 2303-2306. doi:10.1021/ma00141a019

[3] L. Gargallo, N. Hamidi and D. Radic, “Synthesis, Solution Properties and Chain Flexibility of Poly(2,6-Dimethylphenyl Methacrylate),” Polymer, Vol. 31, No. 5, 1990, pp. 924-927. doi:10.1016/0032-3861(90)90057-6

[4] Y. Abe and P. J. Flory, “Configurational Statistics of 1,4-Polybutadiene Chains,” Macromolecules, Vol. 4, No. 2, 1971, pp. 219-230. doi:10.1021/ma60020a017

[5] H. Yamakawa and M. Fujii, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024

[6] M. Bohdanecky, “New Method for Estimating the Parameters of the Wormlike Chain Model from the Intrinsic Viscosity of Stiff-Chain Polymers,” Macromolecules, Vol. 16, No. 9, 1983, pp. 1483-1492. doi:10.1021/ma00243a014

[7] H. Morawetz, “Macromolecules in Solution,” Interscience Publishers, New York, 1958.

[8] E. Brandrup, H. Immergut and E. A. Grulke, Eds., “Polymer Handbook,” 4th Edition, John Wily & Sons, Inc. New York, 1999.

[9] M. L. Huggins, “The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration,” Journal of the American Chemical Society, Vol. 64, No. 11, 1942, pp. 2716-2718. doi:10.1021/ja01263a056

[10] E. O. Kraemer, “Molecular Weights of Celluloses and Cellulose Derivates,” Industrial & Engineering Chemistry, Vol. 30, No. 10, 1938, pp. 1200-1203. doi:10.1021/ie50346a023

[11] N. Hamidi, “Synthesis and Characterization of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C By Two-Angle Light-Scattering and Differential Pressure Viscometry,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.

[12] J. M. G. Cowie, “Polymers: Chemistry & Physics of Modern Materials,” 2nd Edition, Chapman & Hall, London, 1991, (1a) pp. 165, 191-192 and 219; (1b) p. 217; (1c) p. 218.

[13] P. J. Flory, “Principles of Polymer Chemistry,” Cornell University Press, Ithaca, 1953, (2a) p. 27, (2b) p. 310, (3c) p. 617.

[14] H. Yamakawa, “Modern Theory of Polymer Solution,” Harper and Row Publishers, New York, 1971.

[15] N. Hamidi, L. Sealey and B. Hamidi, “Diluted Solution Properties of Poly (3,5-Dimethyl-Phenyl-Acrylate) in Toluene At 25?C and 30?C,” International Journal of Applied Science and Technology, Vol. 2, No. 3, 2012, pp. 7-23.

[16] N. Hamidi, S. Ihekweazu, C. A. Wiredu, O. H. Isa, K. Watley, C. Rowe, B. Nimmons, A. Prezzy, T. Govan, S. Scoville and Q. Hills, “Solution Viscosity of Poly(3,5-Dimethyl-Phenyl-Acrylate) in Toluene at 40?C,” 63rd Southeaster Regional Meeting of American Chemical Society, Richmond, 26-29 October 2011.

[17] J. M. Barrales Rienda, C. Romero Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 2. Molecular Weight Dependence of the Intrinsic Viscosity in a Few Good Solvents,” Macromolecules, Vol. 16, 1983, p. 1940.

[18] W. R. Moore, “Viscosities of Dilute Polymer Solutions,” Progress in Polymer Science, Vol. 1, 1967, pp. 1-43. doi:10.1016/0079-6700(67)90001-9

[19] J. M. Barrales Rienda, C. R. Galicia, J. J. Freire and A. Horta, “Dilute Solution Properties of Poly[N-(n-Octadecyl)Maleimide]. 4. Cloud Points, θ Solvents, and Molecular Weight Dependence of Intrinsic Viscosity in nAlkyl Alcohols as θ Solvents,” Macromolecules, Vol. 16, No. 11, 1983, pp. 1707-1714. doi:10.1021/ma00245a006

[20] A. E. Tonelli, NMR Spectroscopy and Polymer Microstructure, the Conformational Connection,” VHC Publishers, New York, 1989, p. 56.

[21] Y. Miyaki, Y. Einaga, H. Fujita and M. Fukuda, “Flory’s Viscosity Factor for the System Polystyrene + Cyclohexane at 34.5?C,” Macromolecules, Vol. 13, No. 3, 1980, pp. 588-592. doi:10.1021/ma60075a021

[22] H. Yamakawa and M. Fuji, “Intrinsic Viscosity of Wormlike Chains. Determination of the Shift Factor,” Macromolecules, Vol. 7, No. 1, 1974, pp. 128-135. doi:10.1021/ma60037a024

[23] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolecules, Vol. 21, No. 1, 1988, pp. 165-171. doi:10.1021/ma00179a033

[24] A. Ka?tánek, S. Podzimek, J. Dostál, L. ?imek and M. Bohdaneck??y, “Estimation of Conformational Characteristics of Bisphenol-A Based Poly(Hydroxyethers),” Polymer, Vol. 41, No. 8, 2000, pp. 2865-2870. doi:10.1016/S0032-3861(99)00474-7

[25] M. Bohdaneck??y and M. Netopilík, “Note on the Application of the Yoshizaki-Nitta-Yamakawa Theory of the Intrinsic Viscosity of the Touched-Bead Model,” Die Makromolekulare Chemie, Rapid Communications, Vol. 14, No. 7, 1993, pp. 383-386. doi:10.1002/marc.1993.030140703

[26] T. Yoshizaki, J. Nitta and H. Yamakawa, “Transport Coefficients of Helical Wormlike Chains. 4. Intrinsic Viscosity of the Touched-Bead Model,” Macromolekules, Vol. 21, No. 1, 1988, pp. 165-171.

[27] H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, New York, 1971.

[28] H. Fujita, “Polymer Solutions,” Elsevier, Amsterdam, 1990.

[29] H. Yamakawa and W. H. Stockmayer, “Statistical Mechanics of Wormlike Chains. II. Excluded Volume Effects,” Journal of Chemical Physics, Vol. 57, No. 7, 1972, p. 2843. doi:10.1063/1.1678675

[30] T. Norisuye and H. Fujita, “Excluded-Volume Effects in Dilute Polymer Solutions. XIII. Effects of Chain Stiffness,” Polymer Journal, Vol. 14, No. 2, 1982, pp. 143-147. doi:10.1295/polymj.14.143

[31] H. Yamakawa and J. Shimada, “Stiffness and Excluded— Volume Effects in Polymer Chains,” Journal of Chemical Physics, Vol. 83, No. 5, 1985, pp. 2607-2611. doi:10.1063/1.449254

[32] J. Shimada and H. Yamakawa, “Statistical Mechanics of Helical Worm-Like chains. XV. Excluded-Volume Effects,” Journal of Chemical Physics, Vol. 85, No. 1, 1976, pp. 591-601.

[33] W. Burchard, “üBer den Einflu? der L?sungsmittel Auf die Struktur Linearer Makromoleküle. I,” Die Makromolekulare Chemie, Vol. 50, No. 1, 1961, p. 210. doi:10.1002/macp.1961.020500102

[34] W. H. Stockmayer and M. Fixman, “On the Estimation of Unperturbed Dimensions from Intrinsic Viscosities,” Journal of Polymer Science, Part C, No. 1, 1963, p. 137.

[35] M. Bohdaneck??y, J. Kovár and I. Fortel??y, “Partial Draining of Low-Molecular Weight Polymers with Flexible Chains,” Polymer, Vol. 20, No. 7, 1979, pp. 813-817.

[36] S. Lifson and I. Oppenheim, “Neighbor Interactions and Internal Rotations in Polymer Molecules. IV. Solvent Effect on Internal Rotations,” Journal of Chemical Physics, Vol. 33, No. 1, 1960, p. 109. doi:10.1063/1.1731064

[37] D. J. Joon, P. R. Sundarajan and P. J. Flory, “Conformational Characteristics of Polystyrene,” Macromolecules, Vol. 8, No. 6, 1975, pp. 776-783. doi:10.1021/ma60048a019

[38] T. Beha and L. Valko, “Theoretical Estimation of the Effect of Solvent on Unperturbed Dimensions: 1. Isotactic Poly(Vinyl Alcohol),” Polymer, Vol. 17, No. 4, 1976, pp. 298-302. doi:10.1016/0032-3861(76)90185-3