[1] E. Scott, G. Tam, B. Anderson and C. Schmidt, “Anomalous Potentials in Lithium Ion Cells: Making the Case for 3-D Modeling of 3-D Systems,” The Electrochemical Society Meeting, Orlando, 13 October 2003.
[2] E. Scott, G. Tam, B. Anderson and C. Schmidt, “Observation and Mechanism of Anomalous Local Potentials during Charging of Lithium Ion Cells,” The Electrochemical Society Meeting, Paris, 29 April 2003.
[3] K. West, T. Jacobsen and S. Atlung, “Modeling of Porous Insertion Electrodes with Liquid Electrolyte,” Journal of the Electrochemical Society, Vol. 129, No. 7, 1982, pp. 1480-1485. doi:10.1149/1.2124188
[4] M. Doyle, T. F. Fuller and J. Newman, “Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell,” Journal of the Electrochemical Society, Vol. 140, No. 6, 1993, pp. 1526-1533. doi:10.1149/1.2221597
[5] T. F. Fuller, M. Doyle and J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion Cell,” Journal of the Electrochemical Society, Vol. 141, No. 1, 1994, pp. 1-10. doi:10.1149/1.2054684
[6] P. Arora, M. Doyle and R. E. White, “Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium-Ion Batteries Using Carbon-Based Negative Electrodes,” Journal of the Electrochemical Society, Vol. 146, No. 10, 1999, pp. 3543-3553. doi:10.1149/1.1392512
[7] M. Tang, P. Albertus and J. Newman, “Two-Dimensional Modelling of Lithium Deposition during Cell Charging,” Journal of the Electrochemical Society, Vol. 156, No. 5, 2009, pp. A390-A399. doi:10.1149/1.3095513
[8] K. Eberman, P. M. Gomadam, G. Jain and E. Scott, “Material and Design Options for Avoiding Lithium-Plating during Charging,” ECS Transactions, Vol. 25, No. 35, 2010, pp. 47-58. doi:10.1149/1.3414003
[9] G. F. Kennell and R. W. Evitts, “Charge Density in Non-Isotropic Electrolytes Conducting Current,” The Canadian Journal of Chemical Engineering, Vol. 90, No. 2, 2012, pp. 377-384.
[10] W. Dreyer, M. Gaberscek, C. Guhlke, R. Huth and J. Jamnik, “Phase Transition in a Rechargeable Lithium Battery,” European Journal of Applied Mathematics, Vol. 22, No. 3, 2011, pp. 267-290. doi:10.1017/S0956792511000052
[11] G. F. Kennell, “Electrolytic Transport, Electric Fields, and the Propensity for Charge Density in Electrolytes,” Ph.D. Dissertation, University of Saskatchewan, Saskatoon, 2011.
[12] M. Doyle and Y. Fuentes, “Computer Simulations of a Lithium-Ion Polymer Battery and Implications for Higher Capacity Next-Generation Battery Designs,” Journal of the Electrochemical Society, Vol. 150, No. 6, 2003, pp. A706-A713. doi:10.1149/1.1569478
[13] J. Christensen, V. Srinivasan and J. Newman, “Optimization of Lithium-Titanate Electrodes for High-Power Cells,” Journal of the Electrochemical Society, Vol. 153, No. 3, 2006, pp. A560-A565. doi:10.1149/1.2172535
[14] S. G. Stewart and J. Newman, “The Use of UV/Vis Absorption to Measure Diffusion Coefficients in LiPF6 Electrolytic Solutions,” Journal of the Electrochemical Society, Vol. 155, No. 1, 2008, pp. F13-F16. doi:10.1149/1.2801378