JBNB  Vol.3 No.4 A , October 2012
Effect of Surface Roughness and Materials Composition
ABSTRACT
In the mouth, biofilm formation occurs on all soft and hard surfaces. Microbial colonization on such surfaces is always preceded by the formation of a pellicle. The physicochemical surface properties of a pellicle are largely dependent on the physical and chemical nature of the underlying surface. Thus, the surface structure and composition of the underlying surface will influence on the initial bacterial adhesion. The aim of this review is to evaluate the influence of the surface roughness and the restorative material composition on the adhesion process of oral bacteria. Both in vitro and in vivo studies underline the importance of both variables in dental plaque formation. Rough surfaces will promote plaque formation and maturation. Candida species are found on acrylic dentures, but dentures coating and soaking of dentures in disinfectant solutions may be an effective method to prevent biofilm formation. Biofilms on gold and amalgam are thick, but with low viability. Glass-ionomer cement collects a thin biofilm with a low viability. Biofilms on composites cause surface deterioration, which enhances biofilm formation. Biofilms on ceramics are thin and highly viable.

Cite this paper
M. Gharechahi, H. Moosavi and M. Forghani, "Effect of Surface Roughness and Materials Composition," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 541-546. doi: 10.4236/jbnb.2012.324056.
References
[1]   H. J. Busscher and A. H. Weerkamp, “Specific and Nonspecific Interactions in Bacterial Adhesion to Solid Substrata,” FEMS Microbiology Reviews, Vol. 46, No. 2, 1987, pp. 165–173. doi:10.1111/j.1574-6968.1987.tb02457.x

[2]   A. A. Scheie, “Mechanisms of Dental Plaque Formation,” Advances in Dental Research, Vol. 8, No. 2, 1994, pp. 246-253.

[3]   R. Bos, H. C. van der Mei and H. J. Busscher, “Physico-Chemistry of Initial Microbial Adhesive Interactions— Its Mechanisms and Methods for Study,” FEMS Microbiology Reviews, Vol. 23, No. 2, 1999, pp. 179-230.

[4]   D. Grenier and D. Mayrand, “Nutritional Relationships between Oral Bacteria,” Infection and Immunity, Vol. 53, No. 3, 1986, pp. 616-620.

[5]   J. Miron, D. Ben-Ghedalia and M. Morrison, “Invited Review: Adhesion Mechanisms of Rumen Cellulolytic Bacteria,” Journal of Dairy Science, Vol. 84, No. 6, 2001, pp. 1294-1309.

[6]   J. W. Costerton, P. S. Stewart and E. P. Greenberg, “Bacterial Biofilms: A Common Cause of Persistent Infections,” Science, Vol. 284, No. 5418 1999, pp. 1318-1322.

[7]   R. G. Lee, C. Adamson and S. W. Kim, “Competitive Adsorption of Plasma Proteins onto Polymer Surfaces,” Thrombosis Research, Vol. 4, No. 3, 1974, pp. 485-490. doi:10.1016/0049-3848(74)90083-8

[8]   R. E. Baier and P. O. Glantz, “Characterization of Oral in Vivo Films Formed on Different Types of Solid Surfaces,” Acta Odontologica Scandinavica, Vol. 36, No. 5, 1978, pp. 289-301. doi:10.3109/00016357809029079

[9]   H. P. de Jong, P. de Boer, A. W. van Pelt, H. J. Busscher and J. Arends, “Effect of Topically Applied Fluoride Solutions on the Surface Free Energy of Pellicle-Covered Human Enamel,” Caries Research, Vol. 18, No. 6, 1984, pp. 505-508. doi:10.1159/000260812

[10]   D. H. Fine, J. M. Wilton and C. Caravana, “In Vitro Sorption of Albumin, Immunoglobulin G, and Lysozyme to Enamel and Cementum from Human Teeth,” Infection and Immunity, Vol. 44, No. 2, 1984, pp. 332-338.

[11]   M. S. Ruan, C. Di Paola and I. D. Mandel, “Quantitative Immunochemistry of Salivary Proteins Adsorbed in Vitro to Enamel and Cementum from Caries-Resistant and Caries-Susceptible Human Adults,” Archives of Oral Biology, Vol. 31, No. 9, 1986, pp. 597-601. doi:10.1016/0003-9969(86)90083-X

[12]   I. H. Pratt-Terpstra, J. Mulder, A. H. Weerkamp, J. Feijen and H. J. Busscher, “Secretory IgA Adsorption and Oral Streptococcal Adhesion To Human Enamel and Artificial Solid Substrata with Various Surface Free Energies,” Journal of Biomaterials Science. Polymer Edition, Vol. 2, No. 4, 1991, pp. 239-253. doi:10.1163/156856291X00142

[13]   M. Rykke and T. Sonju, “Amino Acid Composition of Acquired Enamel Pellicle Collected in Vivo after 2 Hours and after 24 Hours,” Scandinavian Journal of Dental Research, Vol. 99, No. 6, 1991, pp. 463-469. doi:10.1111/j.1600-0722.1991.tb01055.x

[14]   C. Sipahi, N. Anil and E. Bayramli, “The Effect of Acquired Salivary Pellicle on the Surface Free Energy and Wettability of Different Denture Base Materials,” Journal of Dentistry, Vol. 29, No. 3, 2001, pp. 197-204. doi:10.1016/S0300-5712(01)00011-2

[15]   T. Lie, “Early Dental Plaque Morphogenesis. A Scanning Electron Microscope Study Using the Hydroxyapatite Splint Model and a Low-Sucrose Diet,” Journal of Periodontal Research, Vol. 12, No. 2, 1977, pp. 73-89. doi:10.1111/j.1600-0765.1977.tb00111.x

[16]   T. Lie, “Ultra-structural Study of Early Dental Plaque Formation,” Journal of Periodontal Research, Vol. 13, No. 5, 1978, pp. 391-409. doi:10.1111/j.1600-0765.1978.tb00194.x

[17]   T. Lie, “Morphologic Studies on Dental Plaque Formation,” Acta Odontologica Scandinavica, Vol. 37, No. 2, 1979, pp. 73-85. doi:10.3109/00016357909027575

[18]   B. Nyvad and O. Fejerskov, “Scanning Electron Microscopy of Early Microbial Colonization of Human Enamel and Root Surfaces in Vivo,” Scandinavian Journal of Dental Research, Vol. 95, No. 4, 1987, pp. 287-296. doi:10.1111/j.1600-0722.1987.tb01844.x

[19]   H. N. Newman, “Diet, Attrition, Plaque and Dental Disease,” British Dental Journal, Vol. 136, No. 12, 1974, pp. 491-497. doi:10.1038/sj.bdj.4803220

[20]   J. Waerhaug, “Effect of Rough Surfaces upon Gingival Tissue,” Journal of Dental Research, Vol. 35, No. 2, 1956, pp. 323-325. doi:10.1177/00220345560350022601

[21]   K. Kawai, M. Urano and S. Ebisu, “Effect of Surface Roughness of Porcelain on Adhesion of Bacteria and Their Synthesizing Glucans,” Journal of Prosthetic Dentistry, Vol. 83, No. 6, 2000, pp. 664-667.

[22]   J. A. Sorensen, “A Rationale for Comparison of Plaque-Retaining Properties of Crown Systems,” Journal of Prosthetic Dentistry, Vol. 62, No. 3, 1989, pp. 264-269. doi:10.1016/0022-3913(89)90329-6

[23]   J. Einwag, A.Ulrich and F. Gehring, “In-Vitro Plaque Accumulation on Different Filling Materials,” Oralprophylaxe, Vol. 12, No. 1, 1990, pp. 22-25.

[24]   M. Shabzendedar, H. Moosavi, F. Kebriaee and A. Daneshvar-Mozafari, “The Effect of Topical Fluoride Therapy on Microleakage of Tooth Colored Restorations,” Journal of Conservative Dentistry, Vol. 14, No. 3, 2011, pp. 297-301. doi:10.4103/0972-0707.85820

[25]   A. Carlén, K. Nikdel, A. Wennerberg, K. Holmberg and J. Olsson, “Surface Characteris-tics and in Vitro Biofilm Formation on Glass Ionomer and Composite Resin,” Biomaterials, Vol. 22, No. 5, 2001, pp. 481-487. doi:10.1016/S0142-9612(00)00204-0

[26]   L. Mei, H. J. Bus-scher, H. C. van der Mei and Y. Ren, “Influence of Surface Roughness on Streptococcal Adhesion Forces to Composite Resins,” Dental Materials, Vol. 27, No. 8, 2011, pp. 770-778. doi:10.1016/j.dental.2011.03.017

[27]   M. Ikeda, K. Matin, T. Nikaido, R. M. Foxton and J. Tagami, “Effect of Surface Characteristics on Adherence of S. mutans Biofilms to Indirect Resin Composites,” Dental Materials Journal, Vol. 26, No. 6, 2007, pp. 915-923. doi:10.4012/dmj.26.915

[28]   T. D. Morgan and M. Wilson, “The Effects of Surface Roughness and Type of Denture Acrylic on Biofilm Formation by Streptococcus Oralis in a Constant Depth Film Fermentor,” Journal of Applied Microbiology, Vol. 91, No. 1, 2001, pp. 47-53. doi:10.1046/j.1365-2672.2001.01338.x

[29]   M. Yamauchi, K. Yamamoto, M. Wakabayashi and J. Kawano, “In Vitro Adherence of Microorganisms to denture base resin with different surface texture,” Dental Materials Journal, Vol. 9, No. 1, 1990, pp. 19-24. doi:10.4012/dmj.9.19

[30]   S. M. Azevedo, K. Z. Kantorski, L. F. Valandro, M. A. Bottino and C. A. Pavanelli, “Effect of Brushing with Conventional Versus Whitening Dentifrices on Surface Roughness and Biofilm Formation of Dental Ceramics,” General Dentistry, Vol. 60, No. 3, 2012, pp. 123-130.

[31]   J. Park, C. Song, J. Jung, S. Ahn and J. Ferracane, “The Effects of Surface Roughness of Composite Resin on Biofilm Formation of Streptococcus mutans in the Presence of Saliva,” Operative Dentistry, Vol. 37, No. 5, 2012, pp. 532-539. doi:10.2341/11-371-L

[32]   M. N. Bellon-Fontaine, N. Mozes, H. C. van der Mei, J. Sjollema, O. Cerf, P. G. Rouxhet and H. J. Busscher, “A Comparison of Thermodynamic Approaches to Predict the Adhesion of Dairy Microorganisms to Solid Substrata,” Cell Biophysics, Vol. 17, No. 1, 1990, pp. 93-106.

[33]   H. J. Busscher, M. M. Cowan and H. C. van der Mei, “On the Relative Importance of Specific and Non-Specific Approaches to Oral Microbial Adhesion,” FEMS Microbiology Reviews, Vol. 8, No. 3-4, 1992, pp. 199-209. doi:10.1111/j.1574-6968.1992.tb04988.x

[34]   G. Ramage, K. Tomsett, B. L. Wickes, J. L. Lopez Ribot and S. W.Redding, “Denture Stomatitis—A Role for Candida Biofilm,” Oral Sur-gery Oral Medicine Oral Pathology Oral Radiology and Endodontics, Vol. 98, No.1, 2004, pp. 53-59. doi:10.1016/j.tripleo.2003.04.002

[35]   J. Verran and K. L. Motteram, “The Effect of Adherent Oral Streptococci on the Subsequent Adherence of Candida Albicans to Acrylic in Vitro,” Journal of Dentistry, Vol. 15, No. 2, 1987, pp. 73-76. doi:10.1016/0300-5712(87)90003-0

[36]   A. D. Nalbant, A. Kalkanci , B. Filiz and S. Kustimur, “Effectiveness of Different Cleaning Agents against the Colonization of Candida spp and the in Vitro Detection of the Adherence of These Yeast Cells to Denture Acrylic Surfaces,” Yonsei Medical Journal , Vol. 49, No.4 , 2008, pp. 647-654. doi:10.3349/ymj.2008.49.4.647

[37]   C. Branting, M. L. Sund and L. E. Linder, “The Influence of Streptococcus Mutans on Adhesion of Candida Albicans to Acrylic Surfaces in Vitro,” Archives of Oral Biology, Vol. 34, No. 5, 1989, pp. 347-353. doi:10.1016/0003-9969(89)90108-8

[38]   M. Edgerton, F. A. Scannapieco, M. S. Reddy and M. J. Levine, “Human Subman-dibular-Sublingual Saliva Promotes Adhesion of Candida Albicans to Polymethylmethacrylate,” Infection and Immunity, Vol. 61, No. 6, 1993, pp. 2644-2652.

[39]   L. P. Samaranayake and T. W. MacFarlane, “An in Vitro Study of the Adherence of Candida Albicans to Acrylic Surfaces,” Archives of Oral Biology, Vol. 25, No. 8-9, 1980, pp. 603-609. doi:10.1016/0003-9969(80)90075-8,

[40]   B. J. Coco, J. Bagg, L. J. Cross, A. Jose, J. Cross and G. Ramage, “Mixed Candida Albicans and Candida Glabrata Populations Associated with the Pathogenesis of Denture Stomatitis,” Oral Microbiology and Immunology, Vol. 23, No. 5, 2008, pp. 377-383. doi:10.1111/j.1399-302X.2008.00439.x

[41]   T. Arai, T. Ueda, T. Sugiyama and K. Sakurai, “Inhibiting Microbial Adhesion to Denture Base Acrylic Resin by Titanium Dioxide Coating,” Journal of Oral Rehabilitation, Vol. 31, No. 12, 2009, pp. 902-908. doi:10.1111/j.1365-2842.2009.02012.x

[42]   P. M. da Silva, E. J. Acosta, R. Pinto Lde, M. Graeff, D. M. Spolidorio, R. S. Almeida and V. C. Porto, “Microscopical Analysis of Candida Albicans Biofilms on Heat-Polymerised Acrylic Resin after Chlorhexidine Gluconate and Sodium Hypochlorite Treatments,” Mycoses, Vol. 54, No. 6, 2011, pp. e712-717. doi:10.1111/j.1439-0507.2010.02005.x

[43]   A. T. Poortinga, R. Bos and H. J. Busscher, “Measurement of Charge Transfer during Bacterial Adhesion to an Indium Tin Oxide Surface in a Parallel Plate Flow Chamber,” Journal of Microbiological Methods, Vol. 38, No. 3, 1999, pp. 183-189. doi:10.1016/S0167-7012(99)00100-1

[44]   L. Mei, H. C. Van der Mei, Y. Ren, W. Norde and H. J. Busscher, “Poisson Analysis of Streptococcal Bond Strengthening on Stainless Steel with and without a Salivary Conditioning Film,” Langmuir, Vol. 25, No. 11, 2009, pp. 6227-6231. doi:10.1021/la9000494

[45]   T. M. Auschill, N. B. Arweiler, M. Brecx, E. Reich, A. Sculean and L. Netuschil, “The Effect of Dental Restorative Materials on Dental Biofilm,” European Journal of Oral Sciences, Vol. 110, No. 1, 2002, pp. 48-53. doi:10.1046/j.0909-8836.2001.101160.x

[46]   A. Leonhardt, J. Olsson and G. Dahlén, “Bacterial Colonization on Titanium, Hydroxyapatite, and Amalgam Surfaces in Vivo,” Journal of Dental Research, Vol. 74, No. 9, 1995, pp. 1607-1612. doi:10.1177/00220345950740091701

[47]   D. Ready, J. Pratten, N. Mordan, E. Watts and M. Wilson, “The Effect of Amalgam Exposure on Mercury- and Antibiotic-Resistant Bacteria,” International Journal of Antimicrobial Agents, Vol. 30, No. 1, 2007, pp. 34-39. doi:10.1016/j.ijantimicag.2007.02.009

[48]   J. W. Nicholson, A. Aggarwal, B. Czarnecka and H. Limanowska-Shaw, “The Rate of Change of pH of Lactic Acid Exposed to Glass-Ionomer Dental Cements,” Biomaterials, Vol. 21, No. 19, 2000, pp. 1989-1993. doi:10.1016/S0142-9612(00)00085-5

[49]   K. Nakajo, S. Imazato, Y. Takahashi, W. Kiba, S. Ebisu and N. Takahashi, “Fluoride Released from Glass-Ionomer Cement Is Responsible to Inhibit the Acid Production of Caries-Related Oral Streptococci,” Dental Materials, Vol. 25, No. 6, 2009, pp. 703-708. doi:10.1016/j.dental.2008.10.014

[50]   O. T. Al-Naimi, T. Itota, R. S. Hobson and J. F. McCabe, “Fluoride Release for Restora-tive Materials and Its Effect on Biofilm Formation in Natural Saliva,” Journal of Materials Science, Materials in Medicine, Vol. 19, No. 3, 2008, pp. 1243-1248. doi:10.1007/s10856-006-0023-z

[51]   A. Wiegand, W. Buchalla and T. Attin, “Review on Fluoride-Releasing Restorative Materials—Fluoride Release and Uptake Characteristics, Anti-bacterial Activity and Influence on Caries Formation,” Dental Materials, Vol. 23, No. 3, 2007, pp. 343-362. doi:10.1016/j.dental.2006.01.022

[52]   N. Beyth, R. Bahir, S. Matalon, A. J. Domb and E. I Weiss, “Streptococcus Mutans Biofilm Changes Surface-Topography of Resin Composites,” Dental Materials, Vol. 24, No. 6, 2008, pp. 732-736. doi:10.1016/j.dental.2007.08.003

[53]   C. Hansel, G. Leyhausen, U. E. Mai and W. Geurtsen, “Effects of Various Resin Composite (Co)monomers and Extracts on Two Caries-Associated Micro-Organisms in Vitro,” Journal of Dental Research, Vol. 77, No. 1, 1998, pp. 60-76. doi:10.1177/00220345980770010601

[54]   G. Schmalz, Z. Ergücü and K. A. Hiller, “Effect of Dentin on the Antibacterial Activity of Dentin Bonding Agents,” Journal of Endodontics, Vol. 30, No. 5, 2004, pp. 352- 358. doi:10.1097/00004770-200405000-00011

[55]   P. Khalichi, J. Singh, D. G. Cvitkovitch and J. P. Santerre, “The Influence of Triethylene Glycol Derived from Dental Composite Resins on the Regulation of Streptococcus Mutans Gene Expression,” Biomaterials, Vol. 30, No. 4, 2009, pp. 452-459. doi:10.1016/j.biomaterials.2008.09.053

[56]   B. Aydin Sevinc and L. Hanley, “Antibacterial Activity of Dental Composites Containing Zinc Oxide Nanoparticles,” Journal of Biomedical Materials Research, Part B, Applied Biomaterials, Vol. 94, No. 1, 2010, pp. 22-31. doi:10.1002/jbm.b.31620

[57]   M. H. Zarrabi, M. Javidi, M. Naderinasab, M. Gharechahi, “Comparative Evaluation of An-timicrobial Activity of Three Cement: New Endodontic Cement (NEC), Mineral Trioxide Aggregate (MTA) and Portland,” Journal of Oral Science, Vol. 51, No. 3, 2009, pp. 437-442. doi:10.2334/josnusd.51.437

[58]   M. Bidar, M. Naderinasab, A. Talati, K. Ghazvini, S. Asgary, B. Hadizadeh, M. Gharechahi and N. Attaran Mashhadi, “The Effect of Different Concentrations of Chlorhexidine Gluconate on the Antimicrobial Properties of Mineral Trioxide Aggregate and Calcium Enrich Mixture,” Dental Research Journal, Vol. 9, No. 4, 2012, In Press.

[59]   L. Cheng, M. D. Weir, H. H. Xu, A. M. Kraigsley, N. J. Lin, S. Lin-Gibson and X. Zhou, “Antibacterial and Physical Properties of Calcium-Phosphate and Calcium-Fluoride Nanocomposites with Chlorhexidine,” Dental Materials, Vol. 28, No. 5, 2012, pp. 573-583. doi:10.1016/j.dental.2012.01.006

[60]   R. Hahn, R. Weiger, L. Netuschil and M. Brüch, “Microbial Accumulation and Vitality on Different Restorative Materials,” Dental Materials, Vol. 9, No. 5, 1993, pp. 312- 316. doi:10.1016/0109-5641(93)90049-V

[61]   R. Scotti, K. Z. Kantorski, C. Monaco, L. F. Valandro, L. Ciocca and M. A. Bottino, “SEM Evaluation of in Situ Early Bacterial Colonization on a Y-TZP Ceramic: A Pilot Study,” International Journal of Prosthodontics, Vol. 20, No. 4, 2007, pp. 419-422.

[62]   F. Bremer, S. Grade, P. Kohorst and M. Stiesch, “In Vivo Biofilm Formation On Different Dental Ceramics,” Quintessence International, Vol. 42, No. 7, 2011, pp. 565-574.

 
 
Top