Finite Element Modeling of Stress Strain Curve and Micro Stress and Micro Strain Distributions of Titanium Alloys— A Review

Show more

References

[1] W. P. Li, “The Appliance of Titanium Alloy and Its De- velopment,” Light Metals, Vol. 5, No. 53, 2002, pp. 25- 32.

[2] L. Li, J. K. Sun and X. J. Meng, “The Appliance of Tita- nium Alloy and Its Development,” Titanium Industry. Progres, Vol. 21, No. 19, 2004, pp. 58-65

[3] R. R. Boyer, “An Overview on the Use of Titanium in the Aerospace Industry,” Materials science & Engineering A, Vol. 213, No. 1-2, 2004, pp. 103-114.
doi:10.1016/0921-5093(96)10233-1

[4] H. J. Rack and J. I. Qazi, “Titanium Alloys for Biomedi- cal Applications,” Materials Science and Engineering C, Vol. 26, No. 8, 2006, pp. 1269-1277.
doi:10.1016/j.msec.2005.08.032

[5] P. J. Bahia, D. Eylon, R. R. Boyer and D. A. Koss, “Beta Titanium Alloys and Their Role in the Titanium Industry —Keynote Lecture, Beta Titalzium Alloys,” Warrendale, PA, TMS, 1993, pp. 3-14.

[6] E. W. Collings, “The Physical Metalh￠rgy of Titalzium Alloys,” ASM, Materials Park, Ohio, 1984, pp. 2-4.

[7] T. W. Duerig and J. C. Williams, R. R. Boyer and H. W. Rosenberg, “Overview: Microstructure and Properties of Beta Titanium Alloys, Beta Titanium Alloys,” Warren- dale, PA, TMS, 1984, pp. 19-67.

[8] D. Eylon, S. Fujishiro, P. J. Postans and F. H. Froes, “High Temperature Alloys—A Review,” Journal of Met- als, Vol. 36, No. 4, 1984, pp. 55-62.

[9] S. Sastry, T. C. Peng, P. J. Mechter and J. E. O’Neal, “The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys,” Journal of Metals, Vol. 36, No. 5, 1984, pp. 21-28.

[10] V. J. Colagelo and F. A. Heizer, “Analysis of Metallurgi- cal Failures”, John Wiley, New York, 1987.

[11] J. D. Emburg and F. Zok, “Micromechanisms of Frac- ture”, Proceedings of the 26th Conference of Metallur- gists, Winnipeg, 23-26 August 1987, p. 198

[12] J. Sieniawski, “Scientific Papers of the Rzeszow Univer- sity of Technology—Mechanics No. 10,” Rzeszow Uni- versity, Rzeszow, 1985.

[13] L. J. Hunter, M. Strangwood and P. Bowen, “Effect of Microstructure on the Fracture Behaviour of the α & β Titanium Alloy Ti-4Al-4Mo-2Sn-0.5Si wt.% (IMI 550) ,” In: P. A. Blenkinsop, W. J. Evans and H. M. Flower, Eds., Titanium’95, Science and Technology, The Institute of Materials, London, 1996, p. 925.

[14] J. Sieniawski, “The Effect of Phase Composition on the Fracture Toughness (KIc) of Structural Titanium Alloys,” Proceedings of the ISUMEL-2 Second International Sym- posium of Ukrainian Mechanical Engineers in Lviv, 2-6 September 1995, p. 101.

[15] G. Lutjering, “Influence of Processing on Microstructure and Mechanical Properties of α & β Titanium Alloys,” Materials Science and Engineering: A, Vol. 243, No. 1-2, 1998, pp. 32-45. doi:10.1016/S0921-5093(97)00778-8

[16] W. J. Evans, “Optimising Mechanical Properties in α & β Titanium Alloys,” Materials Science and Engineering: A, Vol. 243, No. 1-2, 1998 pp. 89-96.
doi:10.1016/S0921-5093(97)00784-3

[17] C. Cauer and G. Luetjering, “Thermo-Mechanical Proc- essing of High Strength β-Titanium Alloys and Effect on Microstructure and Properties,” Journal of Materials Processing Technology, Vol. 117, No. 3, 2001, pp. 311- 317. doi:10.1016/S0924-0136(01)00788-9

[18] R. Filip, K. Kubiak, W. Ziaja and J. Sieniawski, “The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys,” Journal of Materials Proc- essing Technology, Vol. 133, No. 1-2, 2003, pp. 84-89.
doi:10.1016/S0924-0136(02)00248-0

[19] S. Malinov, W. Sha and Z. Guo, “Application of Artificial Neural Network for Prediction of Time-Temperature —Transformation Diagrams in Titanium Alloys,” Materials Science and Engineering: A, Vol. 283, No. 1-2, 2000, pp. 1-10. doi:10.1016/S0921-5093(00)00746-2

[20] Y. C. Zhu, W. D. Zeng, Y. Sun, F. Feng and Y. G. Zhou, “Artificial Neural Network Approach to Predict the Flow Stress in the Isothermal Compression of As-Cast TC21 Titanium Alloy”, Computational Materials Science, Vol. 50, No. 5,2011, pp. 1785-1790.
doi:10.1016/j.commatsci.2011.01.015

[21] S. Malinov and W. Sha, “Application of Artificial Neural Networks for Modelling Correlations in Titanium Al- loys,” Materials Science and Engineering: A, Vol. 365, No. 1-2, 2004, pp. 202-211.
doi:10.1016/j.msea.2003.09.029

[22] J. McBride, S. Malinov and W. Shaa, “Modelling Tensile Properties of Gamma-Based Titanium Aluminides Using Artificial Neural Network,” Materials Science and Engi- neering: A, Vol. 384, No. 1-2, 2004, pp. 129-137.
doi:10.1016/j.msea.2004.05.072

[23] S. Malinov, W. Sha and J. J. McKeown, “Modelling the Correlation between Processing Parameters and Proper- ties in Titanium Alloys Using Artificial Neural Network,” Computational Materials Science, Vol. 21, No. 3, 2001, pp. 375-394. doi:10.1016/S0927-0256(01)00160-4

[24] M. Kato, T. Fujii and S. Onaka, “Effects of Shape and Volume Fraction of Second Phase on Stress States in Two-Phase Materials,” Materials Science and Engineer- ing: A, Vol. 285, No. 1-2, 2000, pp. 144-150.
doi:10.1016/S0921-5093(00)00639-0

[25] J. R. C. Guimaraes and D. L. Valeriano Alves, “On the Analysis of Stress-Strain Curves by Means of Empirical Equations,” Scripta Metallurgica, Vol. 9, No. 11, 1975, pp. 1147-1148. doi:10.1016/0036-9748(75)90395-6

[26] P. R. Rios, J. R. C. Guimares and K. K. Chawla, “Model- ling the Stress-Strain Curves of Dual Phase Steels,” Scripta Metallurgica, Vol. 15, No. 8, 1981, pp. 899-904.
doi:10.1016/0036-9748(81)90274-X

[27] B. K. Kad, M. Dao, J. Robert and Asaro, “Numerical Simulations of Stress-Strain Behavior in Two-Phase α2 + β Lamellar TiAl Alloys,” Materials Science and Engi- neering: A, Vol. 192-193, 1995, pp. 97-103.
doi:10.1016/0921-5093(94)03210-6

[28] X. P. Wu, S. R. Kalidindi, C. Necker and A. A. Salem, “Prediction of Crystallographic Texture Evolution and Anisotropic Stress-Strain Curves during Large Plastic Strains in High Purity α-Titanium Using a Taylor-Type Crystal Plasticity Model,” Acta Materialia, Vol. 55, No. 2, 2007, pp. 423-432. doi:10.1016/j.actamat.2006.08.034

[29] S. Malinov, W. Sha and P. Markovsky, “Experimental Study and Computer Modelling of the β ? α + β Phase Transformation in β21s Alloy at Isothermal Conditions,” Journal of Alloys and Compounds, Vol. 348, No. 1-2, 2003, pp. 110-118. doi:10.1016/S0925-8388(02)00804-6

[30] J. D. C. Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis and L. Hericher, “Modeling of the Phase Transformations in Near-β Titanium Alloys during the Cooling after Forg- ing,” Computational Materials Science, Vol. 42, No. 2, 2008, pp. 266-280. doi:10.1016/j.commatsci.2007.07.056

[31] J. Jinoch, S. Ankem and H. Margolin, “Calculations of Stress-Strain Curve and Stress and Strain Distributions for an α-β Ti-8Mn Alloy,” Materials Science and Engi- neering, Vol. 34, No. 3, 1978, pp. 203-211.
doi:10.1016/0025-5416(78)90052-6

[32] S. Neti, M. N. Vijayshankar and S. Ankem, “Finite Ele- ment Method Modeling of Deformation Behavior of Two-Phase Materials Part I: Stress-Strain Relations,” Materials Science and Engineering: A, Vol. 145, No. 1, 1991, pp. 47-54. doi:10.1016/0921-5093(91)90294-W

[33] S. Neti, M. N. Vijayshankar and S. Ankem, “Finite Ele- ment Method Modeling of Deformation Behavior of Two-Phase Materials Part II: Stress and Strain Distribu- tions,” Materials Science and Engineering: A, Vol. 145, No. 1, 1991, pp. 55-64.
doi:10.1016/0921-5093(91)90295-X

[34] S. Ankem and H. Margolin, “Finite Element Method (FEM) Calculations of Stress-Strain Behavior of Al- pha-Beta Ti-Mn Alloys: Part I. Stress-Strain Relations,” Metallurgical Transactions A, Vol. 13 No. 4, 1982, pp. 595-601.

[35] N. Ramakrishnan and V. S. Arunachalam, “Finite Ele- ment Methods for Materials Modeling,” Progress in Ma- terials Science, Vol. 42, No. 1-4, 1991, pp. 253-261.
doi:10.1016/S0079-6425(97)00031-5

[36] H. Shen and L. C. Brinson, “Finite Element Modeling of Porous Titanium,” International Journal of Solids and Structures, Vol. 44, No. 1, 2007, pp. 320-335.
doi:10.1016/j.ijsolstr.2006.04.020

[37] L. Durand, M. Massaoudi, M. Cabie, A. Ponchet, “Me- chanical Behaviour of a Two-Phase Material from the Behaviour of Its Components: Interface Modelling by Fi- nite Element Method,” Materials and Design, Vol. 29, No. 8, 2008, pp. 1609-1615.
doi:10.1016/j.matdes.2007.10.002

[38] W. Ziaja, “Finite Element Modelling of the Fracture Be- haviour of Surface Treated Ti-6Al-4V Alloy,” Computa- tional Materials Science and Surface Engineering, Vol. 1, No. 1, 2009, pp. 53-60.

[39] X. Q. Zhao, X. L. Zang, Q. F. Wang, P. Joongkeun and Q. X. Yang, “Numerical Simulation of the Stress-Strain Curve and the Stress and Strain Distributions of the Tita- nium-Duplex Alloy,” Rare Metals, Vol. 27, No. 5, 2008, pp. 463-467. doi:10.1016/S1001-0521(08)60163-1

[40] L. M. Wang, J. J. Xu, L. Yan, Z. D. Liu and G. Yang, “A FEM Study on the Mechanical Responses of Pseudoelas- tic TiNi Alloys to a Particle Normal Loads,” Wear, Vol. 260, No. 6, 2006, pp. 573-579.
doi:10.1016/j.wear.2004.12.035

[41] B. Liao, C. L. Zhang, J. Wu, D. Y. Cai, C. M. Zhao, X. J. Ren and Q. X. Yang, “Numerical Simulation of the Stress-Strain Curve of Duplex Weathering Steel,” Mate- rials and Design, Vol. 29, No. 2, 2008, pp. 562-567.
doi:10.1016/j.matdes.2006.12.021

[42] H.-F. Dong, J. Li, Y. Zhang, J. Park and Q.-X. Yang, “Numerical Simulation on the Microstress and Mi- crostrain of Low Si-Mn-Nb Dual-Phase Steel,” Interna- tional Journal of Minerals, Metallurgy and Materials, Vol. 17, No. 2, 2010, pp. 173-178.
doi:10.1007/s12613-010-0209-8

[43] O. O. Oluwole, P. O. Atanda and B. I. Imasogie, “Finite Element Modeling of Heat Transfer in Salt Bath Fur- naces,” The Journal of Minerals and Materials Charac- terization and Engineering, Vol. 8, No. 3, 2009, pp. 229- 236.

[44] C. C. Ihueze, “The Galerki Approach for Finite Elements of Field Functions: The Case of Buckling in GRP,” The Journal of Minerals and Materials Characterization and Engineering, Vol. 9, No. 4, 2010, pp. 389-409.