[1] R. A. Vaia and H. D. Wagner, “Framework for Nano- composites,” Materials Today, Vol. 7, No. 11, 2004, pp. 32-37. doi:10.1016/S1369-7021(04)00506-1
[2] R. Verdejo, M. M. Bernal, L. J. Romasanta and M. A. Lopez-Manchado, “Graphene Filled Polymer Nanocom- posites,” Journal of Materials Chemistry, Vol. 21, No. 10, 2011, pp. 3301-3310. doi:10.1039/c0jm02708a
[3] M. Terrones, et al., “Interphases in Graphene Polymer- Based Nanocomposites: Achievements and Challenges,” Advanced Materials, Vol. 23, No. 44, 2011, pp. 5302- 5310.
doi:10.1002/adma.201102036
[4] J. Liang, et al., “Electromagnetic Interference Shielding of Graphene/Epoxy Composites,” Carbon, Vol. 47, No. 3, 2009, pp. 922-925. doi:10.1016/j.carbon.2008.12.038
[5] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose and J. H. Lee, “Recent Advances in Graphene Based Polymer Composites,” Progress in Polymer Science, Vol. 35, No. 11, 2010, pp. 1350-1375. doi:10.1016/j.progpolymsci.2010.07.005
[6] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Ex- perimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature, Vol. 438, No. 7065, 2005, pp. 201-204.doi:10.1038/nature04235
[7] K. P. Loh, Q. Bao, P. K. Ang and J. Yang, “The Chemis- try of Graphene,” Journal of Materials Chemistry, Vol. 20, No. 12, 2010, pp. 2277-2289. doi:10.1039/b920539j
[8] V. Singh, et al., “Graphene Based Materials: Past, Present and Future,” Progress in Materials Science, Vol. 56, No. 8, 2011, pp. 1178-1271. doi:10.1016/j.pmatsci.2011.03.003
[9] K. S. Kim, et al., “Large-Scale Pattern Growth of Gra- phene Films for Stretchable Transparent Electrodes,” Na- ture, Vol. 457, No. 7230, 2009, pp. 706-710. doi:10.1038/nature07719
[10] S. Grandthyll, et al., “Epitaxial Growth of Graphene on Transition Metal Surfaces: Chemical Vapor Deposition Versus Liquid Phase Deposition,” Journal of Physics: Condensed Matter, Vol. 24, No. 31, 2012, p. 314204. doi:10.1088/0953-8984/24/31/314204
[11] M. Gao, et al., “Epitaxial Growth and Structural Property of Graphene on Pt(111),” Applied Physics Letters, Vol. 98, No. 3, 2011, p. 033101. doi:10.1063/1.3543624
[12] J. Du and H.-M. Cheng, “The Fabrication, Properties, and Uses of Graphene/Polymer Composites,” Macromolecu- lar Chemistry and Physics, Vol. 213, No. 10-11, 2012, pp. 1060-1077. doi:10.1002/macp.201200029
[13] W. Choi, I. Lahiri, R. Seelaboyina and Y. S. Kang, et al., “Synthesis of Graphene and Its Applications: A Review,” Critical Reviews in Solid State and Materials Sciences, Vol. 35, No. 1, 2010, pp. 52-71. doi:10.1080/10408430903505036
[14] W. S. Hummers and R. E. Offema, “Preparation of Gra- phite Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, 1958, p.1339.
[15] D. C. Marcano, et al., “Improved Synthesis of Graphene Oxide,” ACS Nano, Vol. 4, No. 8, 2010, pp. 4806-4814. doi:10.1021/nn1006368
[16] J. Du and H.-M. Cheng, “The Fabrication, Properties, and Uses of Graphene/Polymer Composites,” Macromolecu- lar Chemistry and Physics, Vol. 213, No. 10-11, 2012, pp. 1060-1077. doi:10.1002/macp.201200029
[17] M. C. Wang, C. Yan, L. Ma and N. Hu, “Effect of De- fects on Fracture Strength of Graphene Sheets,” Compu- tational Materials Science, Vol. 54, 2012, pp. 236-239. doi:10.1016/j.commatsci.2011.10.032
[18] M. C. Wang, C. Yan and L. Ma, “Graphene Nanocompo- sites,” In: M. C. Wang, Ed., Composites and Their Prop- erties, Ning Hu, In Tech, Shanghai, 2012, pp. 17-36.
[19] W. Lu, et al., “High-Yield, Large-Scale Production of Few-Layer Graphene Flakes Within Seconds: Using Chlorosulfonic Acid and H2O2 as Exfoliating Agents,” Journal of Materials Chemistry, Vol. 22, No. 18, 2012, pp. 8775-8777. doi:10.1039/c2jm16741g
[20] X. An, et al., “Stable Aqueous Dispersions of Noncova- lently Functionalized Graphene from Graphite and Their Multifunctional High-Performance Applications,” Nano Letters, Vol. 10, No. 11, 2010, pp. 4295-4301. doi:10.1021/nl903557p
[21] S. Park and R. S. Ruoff, “Chemical Methods for the Pro- duction of Graphenes,” Nat Nano, Vol. 4, No. 4, 2009, pp. 217-224. doi:10.1038/nnano.2009.58
[22] S. Park, et al., “The Effect of Concentration of Graphene Nanoplatelets on Mechanical and Electrical Properties of Reduced Graphene Oxide Papers,” Carbon, Vol. 50, No. 12, 2012, pp. 4573-4578. doi:10.1016/j.carbon.2012.05.042
[23] T. N. Huan, T. V. Khai, Y. Kang, K. B. Shim and H. Chung, “Enhancement of Quaternary Nitrogen Doping of Graphene Oxide via Chemical Reduction Prior to Ther- mal Annealing and an Investigation of Its Electrochemi- cal Properties,” Journal of Materials Chemistry, Vol. 22, No. 29, 2012, pp. 14756-14762. doi:10.1039/c2jm31158e
[24] H.-J. Shin, et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Con- ductance,” Advanced Functional Materials, Vol. 19, No. 12, 2009, pp. 1987-1992. doi:10.1002/adfm.200900167
[25] C. Caifeng, T. Chen, H. Wang, G. Sun and X. Yang, “A Rapid, One-Step, Variable-Valence Metal Ion Assisted Reduction Method for Graphene Oxide,” Nanotechnology, Vol. 22, No. 40, 2011, pp. 405602. doi:10.1088/0957-4484/22/40/405602
[26] S. Pei, J. Zhao, J. Du, W. Ren and H. M. Cheng, “Direct Reduction of Graphene Oxide Films into Highly Conduc- tive and Flexible Graphene Films by Hydrohalic Acids,” Carbon, Vol. 48, No. 15, 2010, pp. 4466-4474. doi:10.1016/j.carbon.2010.08.006
[27] G. Wang, et al., “Facile Synthesis and Characterization of Graphene Nanosheets,” The Journal of Physical Chemis- try C, Vol. 112, No. 22, 2008, pp. 8192-8195. doi:10.1021/jp710931h
[28] N. Hu, et al., “Gas Sensor Based on p-Phenylenediamine Reduced Graphene Oxide,” Sensors and Actuators B: Chemical, Vol. 163, No. 1, 2012, pp. 107-114. doi:10.1016/j.snb.2012.01.016
[29] H. A. Becerril, et al., “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conduc- tors,” ACS Nano, Vol. 2, No. 3, 2008, pp. 463-470. doi:10.1021/nn700375n
[30] X. Huang, X. Qi, F. Boey and H. Zhang, “Graphene- Based Composites,” Chemical Society Reviews, Vol. 41, No. 2, 2012, pp. 666-686. doi:10.1039/c1cs15078b
[31] X. Zhao, Q. Zhang and D. Chen, “Enhanced Mechanical Properties of Graphene-Based Poly (Vinyl Alcohol) Composites,” Macromolecules, Vol. 43, No. 5, 2010, pp. 2357-2363. doi:10.1021/ma902862u
[32] L. Jiang, X. P. Shen, J. L. Wu and K. C. Shen, “Prepara- tion and Characterization of Graphene/Poly (Vinyl Alco- hol) Nanocomposites,” Journal of Applied Polymer Sci- ence, Vol. 118, No. 1, 2010, pp. 275-279. doi:10.1002/app.32278
[33] R. K. Layek, S. Samanta and A. K. Nandi, “The Physical Properties of Sulfonated Graphene/Poly (Vinyl Alcohol) Composites,” Carbon, Vol. 50, No. 3, 2012, pp. 815-827. doi:10.1016/j.carbon.2011.09.039
[34] Y. Jinhong, X. Huang, C. Wu and P. Jiang, “Permittivity, Thermal Conductivity and Thermal Stability of Poly (Vi- nylidene Fluoride)/Graphene Nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 2, 2011, pp. 478-484.
[35] Y. Chen, et al., “Preparation, Mechanical Properties and Biocompatibility of Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites,” European Polymer Journal, Vol. 48, No. 6, 2012, pp. 1026-1033. doi:10.1016/j.eurpolymj.2012.03.011
[36] H. Kim, et al., “Graphene/Polyethylene Nanocomposites: Effect of Polyethylene Functionalization and Blending Methods,” Polymer, Vol. 52, No. 8, 2011, pp. 1837-1846.
doi:10.1016/j.polymer.2011.02.017
[37] H.-B. Zhang, W.-G. Zhang, Q. Yan, Z.-G. Jiang and Z.-Z. Yu, “The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethyl- methacrylate Composites,” Carbon, Vol. 50, No. 14, 2012, pp. 5117-5125. doi:10.1016/j.carbon.2012.06.052
[38] X. Li and G. B. McKenna, “Considering Viscoelastic Micromechanics for the Reinforcement of Graphene Polymer Nanocomposites,” ACS Macro Letters, Vol. 1, No. 3, 2012, pp. 388-391. doi:10.1021/mz200253x
[39] H. Kim, Y. Miura and C. W. Macosko, “Graphene/Poly- urethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity,” Chemistry of Materials, Vol. 22, No. 11, 2010, pp. 3441-3450. doi:10.1021/cm100477v
[40] P.-G. Ren, D.-X. Yan, T. Chen, B.-Q. Zeng and Z.-M. Li, “Improved Properties of Highly Oriented Graphene/ Polymer Nanocomposites,” Journal of Applied Polymer Science, Vol. 121, No. 6, 2011, pp. 3167-3174. doi:10.1002/app.33856
[41] G. Goncalves, et al., “Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler,” Journal of Materials Chemistry, Vol. 20, No. 44, 2010, pp. 9927- 9934. doi:10.1039/c0jm01674h
[42] S. Pei and H.-M. Cheng, “The Reduction of Graphene Oxide,” Carbon, Vol. 50, No. 9, 2012, pp. 3210-3228. doi:10.1016/j.carbon.2011.11.010
[43] M. Traina and A. Pegoretti, “In Situ Reduction of Gra- phene Oxide Dispersed in a Polymer Matrix", Journal of Nanoparticle Research, Vol. 14, No. 4, 2012, pp. 1-6. doi:10.1007/s11051-012-0801-0
[44] S. Ansari, A. Kelarakis, L. Estevez and E. P. Giannelis, “Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets,” Small, Vol. 6, No. 2, 2010, pp. 205-209. doi:10.1002/smll.200900765
[45] T. Wei, et al., “Preparation of Graphene Nanosheet/ Polymer Composites Using in Situ Reduction-Extractive Dispersion,” Carbon, Vol. 47, No. 9, 2009, pp. 2296- 2299.
doi:10.1016/j.carbon.2009.04.030
[46] C. Bao, et al., “Preparation of Graphene by Pressurized Oxidation and Multiplex Reduction and Its Polymer Nanocomposites by Masterbatch-Based Melt Blending,” Journal of Materials Chemistry, Vol. 22, No. 13, 2012, pp. 6088-6096. doi:10.1039/c2jm16203b
[47] M. El Achaby, et al., “Preparation and Characterization of Melt-Blended Graphene Nanosheets-Poly (Vinylidene Fluoride) Nanocomposites with Enhanced Properties,” Journal of Applied Polymer Science, 2012 (Online Ver- sion) doi: 10.1002/app.38081
[48] F. Beckert, C. Friedrich, R. Thomann and R. Mu?lhaupt, “Sulfur-Functionalized Graphenes as Macro-Chain-Trans- fer and RAFT Agents for Producing Graphene Polymer Brushes and Polystyrene Nanocomposites,” Macromole- cules, Vol. 45, No. 17, 2012, pp. 7783-7090. doi:10.1021/ma301379z
[49] P. Song, et al., “Fabrication of Exfoliated Graphene- Based Polypropylene Nanocomposites with Enhanced Mechanical and Thermal Properties,” Polymer, Vol. 52, No. 18, 2011, pp. 4001-4010. doi:10.1016/j.polymer.2011.06.045
[50] M. El Achaby, et al., “Mechanical, Thermal, and Rheolo- gical Properties of Graphene-Based Polypropylene Nano- composites Prepared by Melt Mixing,” Polymer Compos- ites, Vol. 33, No. 5, 2012, pp. 733-744. doi:10.1002/pc.22198
[51] Z.-L. Mo, T.-T. Xie, J.-X. Zhang, Y.-X. Zhao and R.-B. Guo, “Synthesis and Characterization of NanoGs-PPy/ Epoxy Nanocomposites by In Situ Polymerization,” Syn- thesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 42, No. 8, 2012, pp. 1172- 1176. doi:10.1080/15533174.2012.684259
[52] I. Zaman, et al., “A Facile Approach to Chemically Modi- fied Graphene and Its Polymer Nanocomposites,” Ad- vanced Functional Materials, Vol. 22, No. 13, 2012, pp. 2735-2743. doi:10.1002/adfm.201103041
[53] S. Chatterjee, et al., “Mechanical Reinforcement and Thermal Conductivity in Expanded Graphene Nanoplate- lets Reinforced Epoxy Composites,” Chemical Physics Letters, Vol. 531, 2012, pp. 6-10. doi:10.1016/j.cplett.2012.02.006
[54] C.-C. Teng, et al., “Thermal Conductivity and Structure of Non-Covalent Functionalized Graphene/Epoxy Com- posites,” Carbon, Vol. 49, No. 15, 2011, pp. 5107-5116. doi:10.1016/j.carbon.2011.06.095
[55] J. R. Potts, et al., “Thermomechanical Properties of Chemically Modified Graphene/Poly (Methyl Methacry- late) Composites Made by in situ Polymerization,” Car- bon, Vol. 49, No. 8, 2011, pp. 2615-2623. doi:10.1016/j.carbon.2011.02.023
[56] F. Zhang, X. Peng, W. Yan, Z. Peng and Y. Shen, “Non- isothermal Crystallization Kinetics of in situ Nylon 6/Graphene Composites by Differential Scanning Calo- rimetry,” Journal of Polymer Science Part B: Polymer Physics, Vol. 49, No. 19, 2011, pp. 1381-1388. doi:10.1002/polb.22321
[57] X. Wang, et al., “In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties,” Journal of Materials Chemistry, Vol. 21, No. 12, 2011, pp. 4222-4227. doi:10.1039/c0jm03710a
[58] P. Fabbri, E. Bassoli, S. B. Bon and L. Valentini, “Prepa- ration and Characterization of Poly (Butylene Terephtha- late)/Graphene Composites by in-Situ Polymerization of Cyclic Butylene Terephthalate,” Polymer, Vol. 53, No. 4, 2012, pp. 897-902. doi:10.1016/j.polymer.2012.01.015
[59] Y. F. Huang and C. W. Lin, “Facile Synthesis and Mor- phology Control of Graphene Oxide/Polyaniline Nano- composites via in-Situ Polymerization Process,” Polymer, Vol. 53, No. 13, 2012, pp. 2574-2582. doi:10.1016/j.polymer.2012.04.022
[60] F. D. C. Fim, N. R. S. Basso, A. P. Graebin, D. S. Azam- buja and G. B. Galland, “Thermal, Electrical, and Me- chanical Properties of Polyethylene-Graphene Nanocom- posites Obtained by in situ Polymerization,” Journal of Applied Polymer Science, 2012 (Online Version). doi: 10.1002/app.38317
[61] S.-Y. Yang, et al., “Synergetic Effects of Graphene Plate- lets and Carbon Nanotubes on the Mechanical and Ther- mal Properties of Epoxy Composites,” Carbon, Vol. 49, No. 3, 2011, pp. 793-803. doi:10.1016/j.carbon.2010.10.014
[62] M. El Achaby and A. Qaiss, “Processing and Properties of Polyethylene Reinforced by Graphene Nanosheets and Carbon Nanotubes,” Materials & Design, Vol. 44, 2013, pp. 81-89. doi:10.1016/j.matdes.2012.07.065
[63] J. W. Suk, R. D. Piner, J. An and R. S. Ruoff, “Mechani- cal Properties of Monolayer Graphene Oxide,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6557-6564. doi:10.1021/nn101781v
[64] M. A. Rafiee, et al., “Fracture and Fatigue in Graphene Nanocomposites,” Small, Vol. 6, No. 2, 2010, pp. 179- 183. doi:10.1002/smll.200901480
[65] M. El Achaby, F. Z. Arrakhiz, S. Vaudreuil, E. M. Essas- sil and A. Quiss, “Piezoelectric β-polymorph Formation and Properties Enhancement in Graphene Oxide—PVDF Nanocomposite Films,” Applied Surface Science, Vol. 258, No. 19, 2012, pp. 7668-7677. doi:10.1016/j.apsusc.2012.04.118
[66] A. Zandiatashbar, R. C. Picu and N. Koratkar, “Mechani- cal Behavior of Epoxy-Graphene Platelets Nanocompo- sites,” Journal of Engineering Materials and Technology, Vol. 134, No. 3, 2012, pp. 031011-031016. doi:10.1115/1.4006499
[67] I. Zaman, et al., “Epoxy/Graphene Platelets Nanocompo- sites with Two Levels of Interface Strength,” Polymer, Vol. 52, No. 7, 2011, pp. 1603-1611. doi:10.1016/j.polymer.2011.02.003
[68] M. A. Rafiee, et al., “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, Vol. 3, No. 12, 2009, pp. 3884-3890. doi:10.1021/nn9010472
[69] S. G. Miller, et al., “Characterization of Epoxy Function- alized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites,” Composites Science and Technology, Vol. 70, No. 7, 2010, pp. 1120-1125. doi:10.1016/j.compscitech.2010.02.023
[70] M. A. Rafiee, et al., “Graphene Nanoribbon Composites,” ACS Nano, Vol. 4, No. 12, 2010, pp. 7415-7420. doi:10.1021/nn102529n
[71] D. R. Bortz, E. G. Heras and I. Martin-Gullon, “Impres- sive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites,” Macromolecules, Vol. 45, No. 1, 2011, pp. 238-245. doi:10.1021/ma201563k
[72] Q. Bao, et al., “Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics,” Advanced Functional Materials, Vol. 20, No. 5, 2010, pp. 782-791. doi:10.1002/adfm.200901658
[73] X. Yang, Y. Tu, L. Li, S. Shang and X.-M. Tao, “Well-Dispersed Chitosan/Graphene Oxide Nanocompo- sites,” ACS Applied Materials & Interfaces, Vol. 2, No. 6, 2010, pp. 1707-1713. doi:10.1021/am100222m
[74] T. Ramanathan, et al., “Functionalized Graphene Sheets for Polymer Nanocomposites,” Nature Nanotechnology, Vol. 3, No. 6, 2008, pp. 327-331. doi:10.1038/nnano.2008.96
[75] D. Cai, J. Jin, K. Yusoh, R. Rafiq and M. Song, “High Performance Polyurethane/Functionalized Graphene Nano- composites with Improved Mechanical and Thermal Properties,” Composites Science and Technology, Vol. 72, No. 6, 2012, pp. 702-707. doi:10.1016/j.compscitech.2012.01.020
[76] K. Nawaz, et al., “Observation of Mechanical Percolation in Functionalized Graphene Oxide/Elastomer Compos- ites,” Carbon, Vol. 50, No. 12, 2012, pp. 4489-4494. doi:10.1016/j.carbon.2012.05.029
[77] T. Kuila, et al., “Preparation of Functionalized Gra- phene/Linear Low Density Polyethylene Composites by a Solution Mixing Method,” Carbon, Vol. 49, No. 3, 2011, pp. 1033-1037. doi:10.1016/j.carbon.2010.10.031
[78] J. Wang, et al., “Direct Synthesis of Hydrophobic Gra- phene-Based Nanosheets via Chemical Modification of Exfoliated Graphene Oxide,” Journal of Nanoscience and Nanotechnology, Vol. 12, No. 8, 2012, pp. 6460-6466. doi:10.1166/jnn.2012.5433
[79] W. Li, et al., “Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites,” Carbon, Vol. 49, No. 14, 2011, pp. 4724-4730. doi:10.1016/j.carbon.2011.06.077
[80] X. Huang, et al., “Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications,” Small, Vol. 7, No. 14, 2011, pp. 1876-1902. doi:10.1002/smll.201002009
[81] C. Lv, Q. Xue, D. Xia and M. Ma, “Effect of Chemisorp- tion Structure on the Interfacial Bonding Characteristics of Graphene-Polymer Composites,” Applied Surface Sci- ence, Vol. 258, No. 6, 2012, pp. 2077-2082. doi:10.1016/j.apsusc.2011.04.056
[82] W. Zhang, I. Srivastava, Y.-F. Zhu, C. R. Picu and N. A. Koratkar, “Heterogeneity in Epoxy Nanocomposites Ini- tiates Crazing: Significant Improvements in Fatigue Re- sistance and Toughening,” Small, Vol. 5, No. 12, 2009, pp. 1403-1407. doi:10.1002/smll.200801910
[83] K. H. Kim, Y. Oh and M. F. Islam, “Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Re- sistant to Fatigue,” Nature Nanotechnology, Vol. 7, No. 9, 2012, pp. 562-566. doi:10.1038/nnano.2012.118
[84] A. Zandiatashbar, C. R. Picu and N. Koratkar, “Control of Epoxy Creep Using Graphene,” Small, Vol. 8, No. 11, 2012, pp. 1676-1682. doi:10.1002/smll.201102686
[85] X. Jiang and L. T. Drzal, “Multifunctional High Density Polyethylene Nanocomposites Produced by Incorporation of Exfoliated Graphite Nanoplatelets 1: Morphology and Mechanical Properties,” Polymer Composites, Vol. 31, No. 6, 2010, pp. 1091-1098. doi: 10.1002/pc.20896
[86] J. R. Potts, D. R. Dreyer, C. W. Bielawski and R. S. Ruoff, “Graphene-Based Polymer Nanocomposites,” Polymer, Vol. 52, No. 1, 2011, pp. 5-25. doi:10.1016/j.polymer.2010.11.042
[87] Y. Shen, et al., “Chemical and Thermal Reduction of Graphene Oxide and Its Electrically Conductive Polylac- tic Acid Nanocomposites,” Composites Science and Tech- nology, Vol. 72, No. 12, 2012, pp. 1430-1435. doi:10.1016/j.compscitech.2012.05.018
[88] V. H. Pham, T. T. Dang, S. H. Hur, E. J. Kim and J. S. Chung, “Highly Conductive Poly (Methyl Methacrylate) (PMMA)-Reduced Graphene Oxide Composite Prepared by Self-Assembly of PMMA Latex and Graphene Oxide through Electrostatic Interaction,” ACS Applied Materials & Interfaces, Vol. 4, No. 5, 2012, pp. 2630-2636. doi:10.1021/am300297j
[89] Y.-K. Yang, et al., “Non-Covalently Modified Graphene Sheets by Imidazolium Ionic Liquids for Multifunctional Polymer Nanocomposites,” Journal of Materials Chemis- try, Vol. 22, No. 12, 2012, pp. 5666-5675. doi:10.1039/c2jm16006d
[90] H. Tang, G. J. Ehlert, Y. Lin and H. A. Sodano, “Highly Efficient Synthesis of Graphene Nanocomposites,” Nano Letters, Vol. 12, No. 1, 2011, pp. 84-90. doi:10.1021/nl203023k
[91] C. Harish, et al., “Synthesis of Polyaniline/Graphene Nanocomposites and Its Optical, Electrical and Electro- chemical Properties,” Advanced Science, Engineering and Medicine, Vol. 5, No. 2, 2013, pp. 140-148. doi:10.1166/asem.2013.1237
[92] Z. Wang, J. K. Nelson, H. Hillborg, S. Zhao and L. S. Schadler, “Graphene Oxide Filled Nanocomposite with Novel Electrical and Dielectric Properties,” Advanced Materials, Vol. 24, No. 23, 2012, pp. 3134-3137. doi:10.1002/adma.201200827
[93] I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, “Tun- able Electrical Conductivity of Individual Graphene Ox- ide Sheets Reduced at ‘Low’ Temperatures,” Nano Let- ters, Vol. 8, No. 12, 2008, pp. 4283-4287. doi:10.1021/nl8019938
[94] S. Ansari and E. P. Giannelis, “Functionalized Graphene Sheet—Poly (Vinylidene Fluoride) Conductive Nanocomposites,” Journal of Polymer Science: Part B: Poly- mer Physics, Vol. 47, No. 9, 2009, pp. 888-897. doi:10.1002/polb.21695
[95] J. Li, M. L. Sham, J.-K. Kim and G. Marom, “Morphol- ogy and Properties of UV/Ozone Treated Graphite Nano- platelet/Epoxy Nanocomposites,” Composites Science and Technology, Vol. 67, No. 2, 2007, pp. 296-305. doi:10.1016/j.compscitech.2006.08.009
[96] S. Ganguli, A. K. Roy and D. P. Anderson, “Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites,” Carbon, Vol. 46, No. 5, 2008, pp. 806-817. doi:10.1016/j.carbon.2008.02.008
[97] S. Heo, et al., “Improved Thermal Properties of Graphene Oxide-Incorporated Poly (Methyl Methacrylate) Micro- spheres,” Journal of Nanoscience and Nanotechnology, Vol. 12, No. 7, 2012, pp. 5990-5994. doi:10.1166/jnn.2012.6344
[98] J. A. King, et al., “Characterization of Exfoliated Graph- ite Nanoplatelets/Polycarbonate Composites: Electrical and Thermal Conductivity, and Tensile, Flexural, and Rheological Properties,” Journal of Composite Materials, Vol. 46, No. 9, 2012, pp. 1029-1039. doi:10.1177/0021998311414073
[99] K. M. F. Shahil and A. A. Balandin, “Graphene-Multi- layer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials,” Nano Letters, Vol. 12, No. 2, 2012, pp. 861-867. doi:10.1021/nl203906r
[100] K. M. F. Shahil and A. A. Balandin, “Thermal Properties of Graphene and Multilayer Graphene: Applications in Thermal Interface Materials,” Solid State Communica- tions, Vol. 152, No. 15, 2012, pp. 1331-1340. doi:10.1016/j.ssc.2012.04.034
[101] A. Yu, et al., “Enhanced Thermal Conductivity in a Hy- brid Graphite Nanoplatelet—Carbon Nanotube Filler for Epoxy Composites,” Advanced Materials, Vol. 20, No. 24, 2008, pp. 4740-4744. doi:10.1002/adma.200800401
[102] D. Yan, et al., “Enhanced Mechanical and Thermal Prop- erties of Rigid Polyurethane Foam Composites Contain- ing Graphene Nanosheets and Carbon Nanotubes,” Poly- mer International, Vol. 61, No. 7, 2012, pp. 1107-1114. doi:10.1002/pi.4188
[103] R. Verdejo, F. B. Bujans, M. A. R. Perez, J. A. D. Saja and M. A. L. Manchado, “Functionalized Graphene Sheet Filled Silicone Foam Nanocomposites,” Journal of Mate- rials Chemistry, Vol. 18, No. 19, 2008, pp. 2221-2226. doi:10.1039/b718289a
[104] S. Vadukumpully, J. Paul, N. Mahanta and S. Vali- yaveetti, “Flexible Conductive Graphene/Poly (Vinyl Chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability,” Carbon, Vol. 49, No. 1, 2011, pp. 198-205. doi:10.1016/j.carbon.2010.09.004
[105] C. Bao, et al., “In Situ Preparation of Functionalized Gra- phene Oxide/Epoxy Nanocomposites with Effective Re- inforcements,” Journal of Materials Chemistry, Vol. 21, No. 35, 2011, pp. 13290-13298. doi:10.1039/c1jm11434d
[106] Y. Zhan, et al., “Cross-Linkable Nitrile Functionalized Graphene Oxide/Poly (Arylene Ether Nitrile) Nanocom- posite Films with High Mechanical Strength and Thermal Stability,” Journal of Materials Chemistry, Vol. 22, No. 12, 2012, pp. 5602-5608. doi:10.1039/c2jm15780b
[107] M. Stürzel, et al., “Novel Graphene UHMWPE Nano- composites Prepared by Polymerization Filling Using Single-Site Catalysts Supported on Functionalized Gra- phene Nanosheet Dispersions,” Macromolecules, Vol. 45, No. 17, 2012, pp. 6878-6887. doi:10.1021/ma301376q
[108] A. S. Wajid, et al., “High-Performance Pristine Graphene/ Epoxy Composites with Enhanced Mechanical and Elec- trical Properties,” Macromolecular Materials and Engi- neering, 2012 (Online Version). doi: 10.1002/mame.201200043
[109] X. Jiang and L. T. Drzal, “Multifunctional High-Density Polyethylene Nanocomposites Produced by Incorporation of Exfoliated Graphene Nanoplatelets 2: Crystallization, Thermal and Electrical Properties,” Polymer Composites, Vol. 33, No. 4, 2012, pp. 636-642. doi: 10.1002/pc.22187
[110] G. Gedler, M. Antunes, V. Realinho and J. I. Velasco, “Thermal Stability of Polycarbonate-Graphene Nanocomposite Foams,” Polymer Degradation and Stability, Vol. 97, No. 8, 2012, pp. 1297-1304. doi:10.1016/j.polymdegradstab.2012.05.027
[111] A. S. Patole, et al., “A Facile Approach to the Fabrication of Graphene/Polystyrene Nanocomposite by in Situ Mi- croemulsion Polymerization,” Journal of Colloid and In- terface Science, Vol. 350, No. 2, 2010, pp. 530-537. doi:10.1016/j.jcis.2010.01.035
[112] A. L. Higginbotham, J. R. Lomeda, A. B. Morgan and J. M. Tour, “Graphite Oxide Flame-Retardant Polymer Nanocomposites,” ACS Applied Materials & Interfaces, Vol. 1, No. 10, 2009, pp. 2256-2261. doi:10.1021/am900419m
[113] S. Wang, M. Tambraparni, J. Qiu, J. Tipton and D. Dean, “Thermal Expansion of Graphene Composites,” Macro- molecules, Vol. 42, No. 14, 2009, pp 5251-5255. doi:10.1021/ma900631c
[114] O. C. Compton, S. Kim, C. Pierre, J. M. Torkelson and S. T. Yguyen, “Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers,” Advanced Materi- als, Vol. 22, No. 42, 2010, pp. 4759-4763. doi:10.1002/adma.201000960
[115] H. Wu and L. T. Drzal, “Graphene Nanoplatelet Paper as a Light-Weight Composite with Excellent Electrical and Thermal Conductivity and Good Gas Barrier Properties,” Carbon, Vol. 50, No. 3, 2012, pp. 1135-1145. doi:10.1016/j.carbon.2011.10.026
[116] C.-H. Chang, et al., “Novel Anticorrosion Coatings Pre- pared from Polyaniline/Graphene Composites,” Carbon, Vol. 50, No. 14, 2012, pp. 5044-5051. doi:10.1016/j.carbon.2012.06.043
[117] P. Song, et al., “Permeability, Viscoelasticity, and Flam- mability Performances and Their Relationship to Polymer Nanocomposites,” Industrial & Engineering Chemistry Research, Vol. 51, No. 21, 2012, pp. 7255-7263. doi:10.1021/ie300311a
[118] A. M. Pinto, J. Cabral, D. A. P. Tanaka, A. M. Mendes and F. D. Magalhaes, “Effect of Incorporation of Gra- phene Oxide and Graphene Nanoplatelets on Mechanical and Gas Permeability Properties of Poly (Lactic Acid) Films,” Polymer International, 2012 (Online Version). doi:10.1002/pi.4290
[119] C. Li, et al., “Graphene Nano-‘Patches’ on a Carbon Nanotube Network for Highly Transparent/Conductive Thin Film Applications,” The Journal of Physical Chem- istry C, Vol. 114, No. 33, 2010, pp. 14008-14012. doi:10.1021/jp1041487
[120] A. S. Patole, et al., “Self Assembled Graphene/Carbon Nanotube/Polystyrene Hybrid Nanocomposite by in Situ Microemulsion Polymerization,” European Polymer Journal, Vol. 48, No. 2, 2012, pp. 252-259. doi:10.1016/j.eurpolymj.2011.11.005
[121] C. Zhang and T. Liu, “A Review on Hybridization Modi- fication of Graphene and Its Polymer Nanocomposites,” Chinese Science Bulletin, Vol. 57, No. 23, 2012, pp. 3010-3021. doi:10.1007/s11434-012-5321-x
[122] S. S. J. Aravind, V. Eswaraiah and S. Ramaprabhu, “Fac- ile Synthesis of One Dimensional Graphene Wrapped Carbon Nanotube Composites by Chemical Vapour Deposition,” Journal of Materials Chemistry, Vol. 21, No. 39, 2011, pp. 15179-15182. doi:10.1039/c1jm12731d
[123] M. K. Shin, et al., “Synergistic Toughening of Composite Fibres by Self-Alignment of Reduced Graphene Oxide and Carbon Nanotubes,” Nature Communications, Vol. 3, 2012, p. 650. doi:10.1038/ncomms1661
[124] R. Wang, J. Sun, L. Gao, C. Xu and J. Zhang, “Fibrous Nanocomposites of Carbon Nanotubes and Graphene- Oxide with Synergetic Mechanical and Actuative Per- formance,” Chemical Communications, Vol. 47, No. 30, 2011, pp. 8650-8652. doi:10.1039/c1cc11488c
[125] S. Chatterjee, et al., “Size and Synergy Effects of Nano- filler Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites,” Carbon, Vol. 50, No. 15, 2012, pp. 5380- 5386. doi:10.1016/j.carbon.2012.07.021
[126] S. Kumar, et al., “Dynamic Synergy of Graphitic Nano- platelets and Multi-Walled Carbon Nanotubes in Poly- etherimide Nanocomposites,” Nanotechnology, Vol. 21, 2010, pp. 105701-105709. doi:10.1088/0957-4484/21/10/105702
[127] J. Yan, et al., “Preparation of Graphene Nanosheet/Car- bon Nanotube/Polyaniline Composite as Electrode Mate- rial for Supercapacitors,” Journal of Power Sources, Vol. 195, No. 9, 2010, pp. 3041-3045. doi:10.1016/j.jpowsour.2009.11.028
[128] Y. Li, T. Yang, T. Yu, L. Zheng and K. Liao, “Synergis- tic Effect of Hybrid Carbon Nantube-Graphene Oxide as a Nanofiller in Enhancing the Mechanical Properties of PVA Composites,” Journal of Materials Chemistry, Vol. 21, No.29, 2011, pp. 10844-10851. doi:10.1039/c1jm11359c
[129] C. Zhang, S. Huang, W. W. Tjiu, W. Fan and T. Liu, “Facile Preparation of Water-Dispersible Graphene Sheets Stabilized by Acid Treated Multi-Walled Carbon Nanotubes and Their Poly (Vinyl Alcohol) Composites,” Journal of Materials Chemistry, Vol. 22, No. 6, 2012, pp. 2427-2434. doi:10.1039/C1JM13921E