Graphene  Vol.1 No.2 , October 2012
Characterization of Nanometer-Spaced Few-Layer Graphene Electrodes
ABSTRACT
We study graphene electrodes that can be used for contacting single molecules. The nanometer-scale gap is made by feedback controlled electroburning in few-layer graphene sheets. We analyze the time stability, and the influence of the temperature and gate voltage on the current flowing through the empty gaps. The electrodes are stable at room temper- ature for long periods of time. We show statistics of the relation between the initial resistance of the few-layer graphe- ne flakes and the final size of the gaps. We find that thicker flakes are more suitable for the fabrication of the elec-trodes.

Cite this paper
E. Burzurí, F. Prins and H. van der Zant, "Characterization of Nanometer-Spaced Few-Layer Graphene Electrodes," Graphene, Vol. 1 No. 2, 2012, pp. 26-29. doi: 10.4236/graphene.2012.12004.
References
[1]   A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. No- voselov and A. K. Geim, “The Electronic Properties of Graphene,” Reviews of Modern Physics, Vol. 81, 2009, pp. 109-162. doi:10.1103/RevModPhys.81.109

[2]   N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. van Wees, “Electronic Transport and Spin Precession in Single Graphene Layers at Room Temperature,” Nature, Vol. 448, No. 7153, 2009, pp. 571-574. doi:10.1038/nature06037

[3]   S. Cho, Y. F. Chen and M. S. Fuhrer, “Gate-Tunable Graphene Spin Valve,” Applied Physics Letters, Vol. 91, No. 12, 2007, p. 123105. doi:10.1063/1.2784934

[4]   S. Sanvito, “Molecular Spintronics,” Chemical Society Reviews, Vol. 40, No. 6, 2011, pp. 3336-3355. doi:10.1039/c1cs15047b

[5]   F. Prins, A. J. Shaikh, J. H. van Esch, R. Eelkema and H. S. J. van der Zant, “Platinum-Nanogaps for Single-Mole- cule Electronics: Room-Temperature Stability,” Physical Chemistry Chemical Physics, Vol. 13, No. 32, 2011, pp. 14297-14301. doi:10.1039/c1cp20555b

[6]   F. Elste and C. Timm, “Transport through Anisotropic Magnetic Molecules with Partially Ferromagnetic Leads: Spin-Charge Conversion and Negative Differential Con- ductance,” Physical Review B, Vol. 73, 2006, p. 235305. doi:10.1103/PhysRevB.73.235305

[7]   M. Misiorny and J. Barnas, “Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current,” Physical Review B, Vol. 75, No. 13, 2007, p. 134425. doi:10.1103/PhysRevB.75.134425

[8]   F. Prins, A. Barreiro, J. W. Ruitenberg, J. S. Seldenthuis, N. Aliaga-Alcalde, L. M. K. Vandersypen and H. S. J. van der Zant, “Room-Temperature Gating of Molecular Junctions Using Few-Layer Graphene Nanogap Elec- trodes” Nano Lettres, Vol. 11, No. 11, 2011, pp. 4607- 4611. doi:10.1021/nl202065x

[9]   S. S. Datta, D. R. Strachan, E. J. Mele and A. T. C. John- son, “Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films,” Nano Letters, Vol. 9, No. 1, 2008, pp. 7-11. doi:10.1021/nl8009044

[10]   A. Castellanos-Gomez, R. H. M. Smit, N. Agra?t, G. Rubio-Bollinger, “Spatially-Resolved Electronic Inho- mogeneities of Graphene due to Subsurface Charges,” Carbon, Vol. 50, No. 3, 2012, pp. 932-938. doi:10.1016/j.carbon.2011.09.055

[11]   H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park and P. L. McEuen, “Fabrication of Metallic Electrodes with Nano- meter Separation by Electromigration,” Applied Physics Letters, Vol. 75, No. 2, 1999, p. 301. doi:10.1063/1.124354

[12]   K. O’Neill, E. A. Osorio and H. S. J. van der Zant, “Self-Breaking in Planar Few-Atom Au Constrictions for Nanometer-Spaced Electrodes,” Applied Physics Letters, Vol. 90, No. 13, 2007, p. 133109. doi:10.1063/1.2716989

[13]   J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” Journal of Applied Physics, Vol. 34, No. 6, 1963, p. 1793. doi:10.1063/1.1702682

[14]   B. Standley, W. Z. Bao, H. Zhang, J. Bruck, C. N. Lau and M. Bockrath, “Graphene-Based Atomic-Scale Swit- ches”, Nano Letters, Vol. 8, No. 10, 2008, p. 3345. doi:10.1021/nl801774a

 
 
Top