AJMB  Vol.2 No.4 , October 2012
Early expression of the tbx22 gene in zebrafish influences positioning of pharyngeal arch cartilages
Abstract: Mutations in human TBX22 cause X-linked cleft palate with anklyoglossia syndrome. The two zebrafish tbx22 splice isoforms, tbx22-1 and tbx22-2, encode proteins of 444 and 400 amino acids, respectively. Zebrafish tbx22 mRNA expression mirrors mammalian TBX22 expression and is consistent with early patterning of the vertebrate face. In zebrafish, tbx22 mRNA is strongly expressed during early pharyngeal arch development in the ventral mesenchyme, and a later expression domain is found in ectomesenchymal cells underlying the stomodeum, a bilaminar epithelial structure demarcating the early forming mouth. Therefore, tbx22 is hypothesized to be involved in craniofacial development. The objective of this work is to characterize the role of tbx22 during craniofacial development in zebrafish. Tbx22 knockdown revealed that defects in tbx22 signaling cause mild clefting, joint defects and dorsoventral patterning defects in cartilages. Quantitative PCR and in situ analysis revealed that knockdown of tbx22 also causes a dramatic decrease in expression of osr1 and gdf5. Craniofacial patterning is dependent on proper signals from endoderm, mesoderm and ectoderm. The early influence of tbx22 on signals within the ventral mesenchyme impacts the domains of several key pharynx-geal arch signals, thereby helping to regulate proper patterning of the developing jaw.
Cite this paper: Silva, T. , Cox, A. , Boominathan, V. , Jezewski, P. and Ferreira, T. (2012) Early expression of the tbx22 gene in zebrafish influences positioning of pharyngeal arch cartilages. American Journal of Molecular Biology, 2, 318-331. doi: 10.4236/ajmb.2012.24033.

[1]   Benouaiche, L., Gitton, Y., Vincent, C., Couly, G. and Levi, G. (2008) Sonic Hedgehog signaling from foregut endoderm patterns the avian nasal capsule. Development, 135, 2221-2225. doi:10.1242/dev.020123

[2]   Hu, D. and Marcucio, R.S. (2009) A SHH-responsive signaling center in the forebrain regulates craniofacial morphogenesis via the facial ectoderm. Development, 136,107-1758. doi:10.1242/dev.026583

[3]   Foppiano, S., Hu, D. and Marcucio, R.S. (2007) Signaling by bone morphogenetic protein directs formation of an ectodermal signaling center that regulates craniofacial development. Developmental Biology, 312, 103-114. doi:10.1016/j.ydbio.2007.09.016

[4]   Alexander, C., Zuniga, E., Blitz, I.L., Wada, N., Le, P, Javidan, P., Zhang, Y., Cho, T., Crump, J.G. and Schilling T.F. (2011) Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development, 138, 5135-5146. doi:10.1242/dev.067801

[5]   Brown, J.M., Wedden, S.E., Millburn, G.H., Robson, L.G., Hill, R.E, et al. (1993) Experimental analysis of the control of expression of the homeobox-gene Msx-1 in the developing limb and face. Development, 119, 41-48.

[6]   Gibson-Brown, J.J. Agulnik, S.I. Silver, L.M. and Papaioannou V.E (1998) Expression of T-box genes Tbx2-Tbx5 during chick organogenesis. Mechanisms of Develop- ment, 74, 165-169. doi:10.1016/S0925-4773(98)00056-2

[7]   Barlow, A.J. Bogardi, J.P. Ladher, R. and Francis-West, P.H. (1999) Expression of chick Barx-1 and its differential regulation by FGF-8 and BMP signaling in the maxilla primordia. Developmental Dynamics, 214,291-302. doi:10.1002/(SICI)1097-0177(199904)214:4<291::AID-AJA2>3.0.CO;2-E

[8]   Lan, Y. Liu, H., Ovitt, C.E., Wang, Q., Maltby, K.M. and Jiang, R. (2009) Distinct and synergistic roles of Osr1 and Osr2 in craniofacial development. Developmental Biology, 331, 490. doi:10.1016/j.ydbio.2009.05.390

[9]   Papaioannou, V.E. and Silver, L.M. (1998) The T-box gene family. BioEssays 20, 9-19 doi:10.1002/(SICI)1521-1878(199801)20:1<9::AID-BIES4>3.0.CO;2-Q

[10]   Wardle, F.C. and Papaioannou, V.E. (2008) Teasing out T-box targets in early mesoderm. Genes & Development, 18, 418-425.

[11]   Kiefer, J.C. (2004) The Tbx Files: The truth is out there. Developmental Dynamics, 231, 232-236. doi:10.1002/dvdy.20122

[12]   Begemann, G. Gibert, Y. Meyer, A. and Ingham, P.W. (2002) Cloning of zebrafish T-box genes tbx15 and tbx18 and their expression during embryonic development. Developmental Dynamics, 114, 137-141. doi:10.1016/S0925-4773(02)00040-0

[13]   Jezewski, P.A. Fang, P.K. Payne-Ferreira, T.L. and Yelick, P.C. (2009) Alternative splicing, phylogenetic analysis, and craniofacial expression of zebrafish tbx22. Developmental Dynamics, 238, 1605-1612. doi:10.1002/dvdy.21962

[14]   Kochilas, L.K., Potluri, V., Gitler, A., Balasubramanian, K. and Chin, A.J. (2003) Cloning and characterization of zebrafish tbx1. Gene Expression Patterns, 3, 645-651

[15]   Funato, N., Nakamura, M., Richardson, J.A., Srivastava, D. and Yanagisawa, H. (2012) Tbx1 regulates oral epithelial adhesion and palatal development. Human Molecular Genetics, 21, 2524-2537. doi:10.1093/hmg/dds071

[16]   Piotrowski, T., Ahn, D., Schilling, T.F., Nair, S., Ruvinsky, I., Geisler, R., Rauch, G., Haffter, P., Zon, L.I., Zhou, Y., Foott, H., Dawid, I.B. and Ho, R.K (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the DiGeorge deletion syndrome in humans. Development, 130, 5043-5052. doi:10.1242/dev.00704

[17]   Braybrook, C., Doudney, K., Marcano, A.C.B., Arnason, A., Bjornsson, A., Patton, N.A, et al. (2001) The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nature Genetics, 29, 179-183. doi:10.1038/ng730

[18]   Haenig, B., Schmidt, C., Kraus, F., Pfordt, M. and Kispert, A. (2002) Cloning and expression analysis of the chick ortholog of TBX22, the gene mutated in X-linked cleft palate and ankyloglossia. Mechanisms of Development, 117, 321-325. doi:10.1016/S0925-4773(02)00196-X

[19]   Marcano, A.C.B., Doudney, K., Braybrook, C., Squires, R., Patton, M.A., Lees, M., et al. (2004) TBX22 mutations are a frequent cause of cleft palate. Journal of Medical Genetics, 41, 68-74. doi:10.1136/jmg.2003.010868

[20]   Herr, A., Meunier, D., Muller, I., Rump, A., Fundele, R., Hilger-Ropers, H., et al. (2003) Expression of mouse tbx22 supports its role in palatogenesis and glossogenesis. Developmental Dynamics, 226, 579-586. doi:10.1002/dvdy.10260

[21]   Bush, J.O., Lan, Y., Maltby, K.M. and Jiang, R (2002) Isolation and developmental expression analysis of tbx22, the mouse homolog of the human X-linked cleft palate gene. Developmental Dynamics, 225, 322-326. doi:10.1002/dvdy.10154

[22]   Miller, C.T., Yelon, D., Stainer, D.Y.R. and Kimmel, C.B. (2003) Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and jaw joint. Development, 130, 1353-1365. doi:10.1242/dev.00339

[23]   Whiteman, P. (1973) The quantitative measurement of alcian blue-glycosaminogycan complexes. Biochemical Journal, 131, 343-350.

[24]   Thisse, C., Thisse, B., Schilling, T.F. and Postlethwait, J.H. (1993) Structure of the zebrafish snail1 gene and its expression in wild-type spadetail and no tail mutant embryos. Development, 119, 1203-1215.

[25]   Payne-Ferreira, T.L. and Yelick, P.C. (2003) Alk8 is required for neural crest cell formation and development of pharyngeal arch cartilages. Developmental Dynamics, 228, 683-696. doi:10.1002/dvdy.10417

[26]   Carney, T.J., Dutton, K.A., Greenhill, E., Delfino-Machin, M., Dufourcq, P., Blader, P., et al. (2006) A direct role for Sox10 in specification of neural crest derived sensory neurons. Development, 133, 4619-4630. doi:10.1242/dev.02668

[27]   Chai, Y. and Maxson Jr, R.E. (2006) Recent advances in craniofacial morphogenesis. Developmental Dynamics, 235, 2353-2375. doi:10.1002/dvdy.20833

[28]   Tena, J.J., Neto, A., de la Calle-Mustiennes, E., Bras-Pereira, C., Casares, F. and Gomez-Skarmeta, J.L. (2007) Odd-Skipped genes encode repressors that control kidney development. Development Biology, 301, 518-531. doi:10.1016/j.ydbio.2006.08.063

[29]   Mudumana, S.P., Hentschel, D., Liu, Y., Vasilyev, A. and Drummond, I.A. (2008) Odd skipped related 1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development, 135, 3355-3367. doi:10.1242/dev.022830

[30]   Neto, A., Mercader, N. and Gómez-Skarmeta, J.L. (2012) The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of wnt2b to maintain pectoral fin development. Development, 139, 301-311. doi:10.1242/dev.074856

[31]   Miller, C.T., Swartz, M.E., Khuu, P.A., Walker, M.B., Eberhart, J.K. and Kimmel, C.B. (2007) Mef2ca is required in cranial neural crest to affect Endothelin1 signaling in zebrafish. Development Biology, 308, 144-157. doi:10.1016/j.ydbio.2007.05.018

[32]   Gao, Y., Lan, Y. and Jiang, R. (2011) The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation. Development Biology, 352, 83-91. doi:10.1016/j.ydbio.2011.01.018

[33]   Lan, Y. Liu, H. Ovitt, C.E. and Jiang, R. (2011) Generation of Osr1 conditional mutant mice. Genesis, 49, 419- 422. doi:10.1002/dvg.20734

[34]   Kawai, S., Yamauchi, M., Wakisaka, S., Ooshima, T. and Amano, A. (2007). Zinc-finger transcription factor odd-skipped related 2 is one of the regulators in osteoblast proliferation and bone formation. Journal of Bone and Mineral Research, 22, 1362-1372. doi:10.1359/jbmr.070602

[35]   Wang, Q., Lan, Y., Cho, E.S., Maltby, K.M. and Jiang, R. (2005). Odd-skipped related 1 (Odd1) is an essential regulator of heart and urogenital development. Development Biology, 288, 582-594. doi:10.1016/j.ydbio.2005.09.024

[36]   Zhang, Z. Lan, Y. Chai, Y. and Jiang, R. (2009). Antagonistic actions of Msx1and Osr2 pattern mammalian teeth into a single row. Science, 323, 1232-1234. doi:10.1126/science.1167418

[37]   Ghosh, T.K., Song, F.F., Packham, E.A., Buxton, S., Robinson, T.E. and Ronksley, J. (2009) Physical interaction between TBX5 and MEF2C is required for early heart development. Molecular and Cellular Biology, 29, 2205-2218. doi:10.1128/MCB.01923-08

[38]   Piotrowski, T., Ahn, D.G., Schilling, T.F., Nair, S., Ruvinsky, I., Gisler, R., et al. (2003) The zebrafish van gogh mutation disrupts tbx1, which is involved in the Di-George deletion syndrome in human. Development, 130, 5043-5052. doi:10.1242/dev.00704

[39]   Naiche, L.A., Harrelson, Z., Kelly, R.G. and Papaioannou, V.E. (2005) T-box genes in vertebrate development. Annual Review of Genetics, 39, 219-239. doi:10.1146/annurev.genet.39.073003.105925

[40]   Swartz, M.E., Sheehan-Rooney, K., Dixon, M.J. and Eberhart, J.K. (2011) Examination of a palatogenic gene program in zebrafish. Developmental Dynamics, 240, 2204-2220. doi:10.1002/dvdy.22713

[41]   Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S. and Zhang, B. (2011) Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 29, 699-700. doi:10.1038/nbt.1939

[42]   Moore, F.E., Reyon, D., Sander, J.D., Martinez, S.A., Blackburn, J.S., Khayter, C., et al. (2012) Improved Somatic Mutagenesis in Zebrafish Using Transcription Activator-Like Effector Nucleases (TALENs). PLoS One, 7, e37877. doi:10.1371/journal.pone.0037877