A Conservative Pressure-Correction Method on Collocated Grid for Low Mach Number Flows

Show more

References

[1] A. J. Chorin, “On the Convergence of Discrete Approximations to the Navier-Stokes Equations,” Mathematics of Computations, Vol. 23, No. 106, 1969, pp. 342-353.
doi:10.1090/S0025-5718-1969-0242393-5

[2] A. J. Chorin, “Numerical Solution of the Navier-Stokes Equations,” Mathematics of Computations, Vol. 22, No. 104, 1968, pp. 745-762.
doi:10.1090/S0025-5718-1968-0242392-2

[3] O. V. Vasilyev, “High Order Finite Difference Schemes on Non-Uniform Meshes with Good Conservative Properties,” Journal of Computational Physics, Vol. 157, No. 2, 2000, pp. 746-761. doi:10.1006/jcph.1999.6398

[4] J. Gullbrand, “An Evaluation of a Conservative Fourth Order DNS Code in Turbulent Channel Flow,” Center for Turbulence Research Annual Research Briefs, NASA Ames/Stanford University, 2000, pp. 211-218.

[5] Y. Morinishi, T. S. Lund, O. V. Vasilyev, P. Moin, “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow,” Journal of Computational Physics, Vol. 143, No. 1, 1998, pp. 90-124.
doi:10.1006/jcph.1998.5962

[6] F. Nicoud, “Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows,” Journal of Computational Physics, Vol. 158, No. 1, 2000, pp. 71-97.
doi:10.1006/jcph.1999.6408

[7] B. Lessani, J. Ramboer, C. Lacor, “Efficient Large-Eddy Simulations of Low Mach Number Flows Using Preconditioning and Multigrid,” International Journal of Computational Fluid Dynamics, Vol. 18, No. 3, 2004, pp. 221-223. doi:10.1080/10618560310001654319

[8] A. Majda and J. Sethian, “The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion,” Combustion Science and Technology, Vol. 42, No. 3-4, 1985, pp. 185-205.
doi:10.1080/00102208508960376

[9] R. G. Rehm and H. R. Baum, “The Equation of Motion for Thermally Driven Buoyant Flows,” Journal of Research of the National Bureau of Standards, Vol. 83, No. 3, 1978, pp. 297-308.

[10] B. Müller, “Low-Mach Number Asymptotics of the Navier–Stokes Equations,” Journal of Engineering Mathematics, Vol. 34, No. 1-2, 1998, pp. 97-109.
doi:10.1023/A:1004349817404

[11] S. Paolucci. “Filtering of Sound from the Navier-Stokes Equations,” Sandia National Laboratories, Livermore, 1982.

[12] F. Nicoud and F. Ducros, “Subgrid-Scale Stress Modeling Based on the Square of Velocity Gradient Tensor,” Flow Turbulence and Combustion, Vol. 62, No. 3, 1999, pp. 183-200. doi:10.1023/A:1009995426001

[13] M. Germano, U. Piomelli, P. Moin and W. H. Cabot, “A Dynamic Subgrid-Scale Eddy Viscosity Model,” Physics of Fluids A 3, Vol. 3, No. 7, 1991, pp. 1760-1765.
doi:10.1063/1.857955

[14] P. Moin, K. Squires, W. Cabot and S. Lee, “A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport,” Physics of Fluids, Vol. 3, No. 11, 1991.
pp. 2746-2757. doi:10.1063/1.858164

[15] C. Hirsch, “Numerical Computation of Internal and External Flows,” John Wiley & Sons Inc., Hoboken, 1990.

[16] A. A. Amsden and F. H. Harlow, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” Los Alamos Scientific Laboratory of the University of California, Los Alamos, 1970.

[17] L. Cheng, and S. Armfield, “A Simplified Marker and Cell Method for Unsteady Flows on Non-Staggered Grids,” International Journal for Numerical Methods in Fluids, Vol. 21, No. 1, 1995, pp. 15-34.
doi:10.1002/fld.1650210103

[18] A. Jameson, “Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings,” Proceedings of 10th Computational Fluid Dynamics Conference, Honolulu, 24-26 June 1991, pp. 91-1596.

[19] J. Kim, P. Moin and R. Moser, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,” Journal of Fluid Mechanics, Vol. 177, 1987, pp. 133-166. doi:10.1017/S0022112087000892

[20] B. Lessani and M. V. Papalexandris, “Time-Accurate Calculation of Variable Density Flows with Strong Temperature Gradients and Combustion,” Journal of Computational Physics, Vol. 212, No. 1, 2006, pp. 218-246.
doi:10.1016/j.jcp.2005.07.001

[21] F. C. Nicoud, “Numerical Study of a Channel Flow with Variable Properties,” Center for Turbulence Research Annual Research Briefs, 1998, pp. 289-310.