JMP  Vol.3 No.10 , October 2012
Effect of Concentration on the Optical and Solid State Properties of ZnO Thin Films Deposited by Aqueous Chemical Growth (ACG) Method
ABSTRACT
Thin films of Zinc Oxide (ZnO) having different concentrations were deposited using the Aqueous Chemical Growth (ACG) method. The films were characterized using Rutherford Back Scattering (RBS) spectroscopy for chemical composition and thickness, X-Ray Diffraction (XRD) for crystallographic structure, a UV-VIS spectrophotometer for the analysis of the optical and solid state properties which include spectral absorbance, transmittance, reflectance, refractive index, direct band gap, real and imaginary dielectric constants, absorption and extinction coefficients and a photomicroscope for photomicrographs. The average deposited film thickness was 100nm. The results indicate that the values of all the optical and solid state properties investigated vary directly with concentration except transmittance which is the reverse. Thus, the optical and solid state properties of ZnO thin film deposited by the Aqueous Chemical Growth method can be tuned by deliberately controlling the concentration of the precursors for various optoelectronic applications including its application as absorber layer in solar cells.

Cite this paper
S. Mammah, F. Opara, F. Sigalo, S. Ezugwu and F. Ezema, "Effect of Concentration on the Optical and Solid State Properties of ZnO Thin Films Deposited by Aqueous Chemical Growth (ACG) Method," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1516-1522. doi: 10.4236/jmp.2012.310187.
References
[1]   T. Kiyoshi, Y. Akihiko and S. Adarsh, “Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices,” Springer, New York, p. 257.

[2]   C. Klingshirn, “ZnO: Material, Physics and Applications,” Chemical Physics and Physical Chemistry, Vol. 8, No. 6, 2007, pp. 782-803. doi:10.1002/cphc.200700002

[3]   E. Wiberg and A. F. Holleman, “Inorganic Chemistry,” Elsevier, Amsterdam, 2001.

[4]   J. W. Nicholson, Journal of Materials Science, Vol. 33, No. 225, 1998.

[5]   J. L. Ferracane, “Material in Dentistry: Principles and Application,” Lippincott Williams & Wilkins, Philadelphia, 2001.

[6]   C. K. Park, M. R. Silsbee, D. M. Roy, “Setting Reaction and Resultant Structure of Zinc Phosphate Cement in Various Orthophosphoric Acid Cement-Forming Liquids,” Cement and Concrete Research, Vol. 28 No. 1, 1998, pp. 141-150. doi:10.1016/S0008-8846(97)00223-8

[7]   N. N. Greenwood and A. Earnshaw, “Chemistry of the Elements,” Butterworth-Heinemann, Oxford, 1997.

[8]   U. Ozgür, Y. T. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, et al., “A Comprehensive Review of ZnO Material and Devices,” Journal of Applied Physics, Vol. 98, No. 4, 2005, Article ID: 041301.

[9]   S. Baruah and J. Dutta, “Hydrothermal Growth of ZnO Nanostructures,” Science and Technology of Advanced Materials, Vol. 10, No. 1, 2009, Article ID: 013001.

[10]   U. Rossler, “Landolt-Bornstein New Series, Group III,” Springer, Heidelberg, 1999.

[11]   T. Mahalingam, V. S. John, M. Raja, Y. K. So and P. J. Sabastian, Solar Energy Materials and Solar Cells, Vol. 88, No. 2, 2005, pp. 129-246.

[12]   Y. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Nane, S. H. Han, “Mn Doped and Undoped ZnO Films: A Comparative Structural Optical and Electrical Properties Study,” Materials Chemistry and Physics, Vol. 96, No. 2-3, 2006, pp. 326-330.

[13]   A. E. Ajuba, S. C. Ezugwu, P. U. Asogwu, F. I. Ezema, Chalcogenide Letter, Vol. 10, 2010, pp. 573-579.

[14]   T. Soki, Y. Hatanaka and D. C. Look, Applied Physics Letters, Vol. 76, No. 3257, 2000.

[15]   Y. Lin, C. R. Gorla, S. Linng, N. Emanetoglu, Y. Tor, H. Shen and M. Wraback, Journal of Electronic Materials, Vol. 29, No. 60, 2000.

[16]   V. R. Shinde, T. P. Gujar and C. D. Lokhande, Sensors and Actuators, Vol. 20, No. 551, 2007.

[17]   A. Ennaoui, S. Siebentrith, M. Ch. Lux-Steiner, W. Riedl and F. Karg, Solar Energy Materials and Solar Cells, Vol. 73, No. 51, 2002.

[18]   Y. Chen, D. Bagnall and T. Yao, Materials Science Engineering B: Solid-State Materials for Advanced Technology, Vol. 75, No. 190, 2000.

[19]   S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu and H. Shen, Journal of Crystal Growth, Vol. 225, No. 110, 2001.

[20]   M. H, Koch, P. Y. Timbrell and R. N. Lamb, Semiconductor Science Technology, Vol.10 No. 7523, 1995.

[21]   C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, K. Lu, M. Wraback and H. Shen, Journal of Applied Physics, Vol. 85, No. 2595, 1999.

[22]   V. R. Shinde, C. D. Lokhande, R. S. Mane and S. H. Han, Applied Surface Science, Vol., 245, No. 407, 2005.

[23]   A. Ennaoui, M. Weber, R. Scheer and H. J. Lewerenz, Solar Energy Materials and Solar Cells, Vol. 54, No. 277, 1998.

[24]   D. S. Boyle, K. Governder and P. O’Brien, Chemical Communications, No. 80, 2002.

[25]   M. Ortega-Lope, A. Avila-Gaecia, M. L. Albor-Aguitera and V.M Sankez Resendiz, Materials Research Bulletin, Vol. 38, No. 1241, 2003.

[26]   F. I. Ezema, “Fabrication, Optical Properties and Applications of Undoped Chemical Bath Deposited ZnO thin Films,” Journal of Research (Science), Vol. 15, No. 4, 2004, pp. 343-350.

[27]   V. R. Shinde, T. P. Gujar and C. D. Lokhande, Solar Energy Materials and Solar Cells, Vol. 91 No. 1055, 1961.

[28]   A. Jimenez Gonzalez and R. Suarez-Para, Journal of Crystal Growth, Vol. 167, No. 649, 1996.

[29]   M. L. de la Olvera, A. Maldonado, R. Asomoza and M. Melendez-Lira, Solar Energy Materials and Solar Cells, Vol. 71, 2002.

[30]   P. M. Izaki and T. Omi, Journal of Electrochemical Society, Vol. 144 No. 1949, 1997.

[31]   D. Gal, G. Hodes, D. Lincot and H. W. Sechock, Thin Solid Films, Vol. 361/362 No. 79, 2000

[32]   X. Hu, Y. Masuda, T. Olyi and K. Kato, Thin Solid Films, Vol. 518, 2009 pp. 621-624

[33]   X. Zhang, L. Wang and G. Zhow, “Synthesis of Well-Aligned ZnO Nanowires without Catalysts,” Reviews on Advanced Materials Science, Vol. 10, 2005, pp. 60-72.

[34]   S. F. Lee, L.Y. Lee and Y. P. Change, Journal of Science and Engineering Technology, Vol. 5, No. 3, pp. 13-20.

[35]   A. E. Ajuba, S. C. Ezugwu, B. A. Ezekoye, F. I. Ezema and P. U. Asogwa, Journal of Optoelectronics and Biomedical Materials, Vol. 2, No. 2, 2009, pp. 73-78.

[36]   V. R. Shinde, C. D. Lokhande, R. S. Mane and S. H. Han, Applied Surface Science, Vol. 245, No. 1-4, 2005, pp. 407-413.

[37]   P. Li, H. Liu, F. X. Xu and Y. Wei, Materials Chemistry and Physics, Vol. 112, No. 393, 2008.

[38]   H. Zhai, W. Wu, F. Lu and H. S. Wang, Material Chemistry and Physics, Vol. 112, No. 1024.

[39]   D. Yiamsawas, K. B. Savanitchakul and W. K. W. Supamonkon, Journal of Microscopy Society of Thailand, Vol. 13, No. 75, 2009.

[40]   S. Y. Chu and T. M. Yan, Journal of Materials Science Letters, Vol. 19, No. 349, 2000.

[41]   D. Geeth and T. Tilagarathi, Digest Journal of Nanomaterials and Biostructures, Vol. 5, No. 1, 2010, Article ID: 297301.

[42]   C. Gumus, O. M. Ozkendir, H. Kavak and Y. Ufuktepe, Journal of Optoelectronics and Advanced Materials, Vol. 8, No.1, 2006, pp. 299-303.

[43]   A. Cruz-Vazquez, F. Rocha-Alonzo, S. E. Burruel-Ibarra, M. Inoue and R. Bernal, Vacio, Vol. 13, 2001, pp. 89-91.

[44]   A. Sachez-Juarez, A. Tiburcio-Silver and A. Ortiz, “Properties of Fluorine-Doped ZnO Deposited onto Glass by Spray Pyrolysis,” Solar energy Materials and Solar Cells, Vol. 52, No. 3-4, 1998, pp. 301-311. doi:10.1016/S0927-0248(97)00246-8

[45]   P. Pushparajah, A. K. Arof and S. Radhakrishna, “Physical Properties of Spray Pyrolysed Pure and Doped ZnO Thin Films,” Journal of Physics D: Applied Physics, Vol. 27, No. 7, 1994, pp. 1518-1521. doi:10.1088/0022-3727/27/7/027

[46]   A. E. Jimenez Gonzalex and J. A. Soto Urueta, “Optical Transmittance and Photoconductivity Studies on ZnO : Al Thin Films Prepared by the Sol-Gel Technique,” Solar energy Materials and Solar Cells, Vol. 52, No. 3-4, 1998, pp. 345-353. doi:10.1016/S0927-0248(97)00243-2

[47]   L. Vayssieres, International Journal of Nanotechnology, Vol. 1. No. 1-2, 2004.

 
 
Top