[1] H. Weyl, Sitzungsber Preuss Akad Wiss. Berlin, 1918, p. 465.
[2] G. Lyra, “Ubereine Modifikation der Riemannschen Geometrie,” Mathematische Zeitschrift, Vol. 54, No. 1, 1951, pp. 52-64. doi:10.1007/BF01175135
[3] D. K. Sen, “A Static Cosmological Model,” Zeitschriftfur Physik A Hadrons and Nuclei, Vol. 149, No. 3, 1957, pp. 311-323.
[4] W. D. Halford, “Cosmological Theory Based on Lyra’s Geometry,” Australian Journal of Physics, Vol. 23, No. 5, 1970, pp. 863-870.
[5] W. D. Halford, “Scalar-Tensor Theory of Gravitation in a Lyra Manifold,” Journal of Mathematical Physics, Vol. 13, No. 11, 1972, pp. 1699-1704.
[6] A. Beesham, “FLRW Cosmological Models in Lyra’s Manifold with Time Dependent Displacement Field,” Australian Journal of Physics, Vol. 41, No. 6, 1988, pp. 833-842.
[7] T. Singh and G. P. Singh, “Lyra’s Geometry and Cosmology: A Review,” Fortschritte der Physik, Vol. 41, No. 8, 1993, pp. 737-764. doi:10.1002/prop.2190410804
[8] G. P. Singh and K. Desikan, “A New Class of Cosmo-Logical Models in Lyra Geometry,” Pramana Journal of Physics, Vol. 49, No. 2, 1997, pp. 205-212. doi:10.1007/BF02845856
[9] A. Pradhan, L. Yadav and A. K. Yadav, “Isotropic Homogeneous Universe with a Bulk Viscous Fluid in Lyra Geometry,” Astrophysics and Space Science, Vol. 299, No 1, 2005, pp. 31-42. doi:10.1007/s10509-005-2795-x
[10] F. Rahaman, “Higher-Dimensional Global Monopole in Lyra’s Geometry,” Fizika B, Vol. 11, No. 4, 2002, pp. 223-229.
[11] F. Rahaman, S. Das, N. Begum and M. Hossain, “Higher Dimensional Homogeneouscosmology in Lyra Geometry,” Pramana Journal of Physics, Vol. 61, No. 1, 2003, pp. 153-159. doi:10.1007/BF02704519
[12] G. P. Singh, R. V. Deshpande and T. Singh, “Higher-Dimensional Cosmological Model with Variable Gravitational Constant and Bulk Viscosity in Lyra Geometry,” Pramana Journal of Physics, Vol. 63, No. 5, 2004, pp. 937-945. doi:10.1007/BF02704332
[13] G. Mohanty, K. L. Mahanta and R. R. Sahoo, “Non-Existence of Five Dimensional Perfect Fluid Cosmological Model in Lyra Manifold,” Astrophysics and Space Science, Vol. 306, No. 4, 2006, pp. 269-272. doi:10.1007/s10509-006-9272-z
[14] G. Mohanty, K. L. Mahanta and B. K. Bishi, “Five Dimensional Cosmological Models in Lyra Geometry with Time Dependent Displacement Field,” Astrophysics and Space Science, Vol. 310, No. 3-4, 2007, pp. 273-276. doi:10.1007/s10509-007-9513-9
[15] G. Mohanty and K. L. Mahanta, “Five-Dimensional Axially Symmetric String Cosmological Model in Lyra Manifold,” Astrophysics and Space Science, Vol. 312, No. 3-4, 2007, pp. 301-304. doi:10.1007/s10509-007-9691-5
[16] D. K. Sen and K. A. Dunn, “A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold,” Journal of Mathematical Physics, Vol. 12, 1971, pp. 578-586. doi:10.1063/1.1665623
[17] T. Singh and G. P. Singh, “Bianchi Type-I Cosmological Models in Lyra’s Geometry,” Journal of Mathematical Physics, Vol. 32, No. 9, 1991, pp. 2456-2458. doi:10.1063/1.529495
[18] T. Singh and G. P. Singh, “Bianchi Type-III and Kantowski-Sachs CosmologicalModels in Lyra’s Geometry,” International Journal of Theoretical Physics, Vol. 31, No. 8, 1992, pp. 1433-1446. doi:10.1007/BF00673976
[19] J. K. Singh and Sri Ram, “Spatially Homogeneous Cosmological Models in Lyra’s Geometry,” Il NuovoCimento B, Vol. 112, No. 8, 1997, pp.1157-1162.
[20] A. Vilenkin and E. P. S. Shellard, “Cosmic Strings and other Topological Defects,” Cambridge University Press, Cambridge, 1994.
[21] A. Vilenkin, “Cosmic Strings and Domain Walls,” Physics Reports, Vol. 121, No. 5, 1985, pp. 263-315. doi:10.1016/0370-1573(85)90033-X
[22] A. Vilenkin and A. E. Everett, “Cosmic Strings and Domain Walls in Models with Goldstone and Pseudo-Goldstone Bosons,” Physical Review Letters, Vol. 48, No. 26, 1982, pp. 1867-1870. doi:10.1103/PhysRevLett.48.1867
[23] R. Rajaraman, “Solutions and Instantons,” North-Holland, Amsterdam, 1987.
[24] T. H. R. Skyrme, “Particle States of a Quantized Meson Field,” Proceedings of the Royal Society A, Vol. 262, No. 1309, 1961, pp. 237-245.
[25] T. W. B. Kibble, “Topology of Cosmic Domains and Strings,” Journal of Physics A, Vol. 9, No. 8, 1976, p. 1387.
[26] A. Vilkenkin, “Cosmic Strings,” Physical Review D, Vol. 24, No. 8, 1982, pp. 2082-2089.
[27] A. E. Everett, “Cosmic Strings in Unified Gauge Theories,” Physical Review D, Vol. 24, No. 4, 1981, pp. 858-868. doi:10.1103/PhysRevD.24.858
[28] Ya. B. Zeldovich, I. Yu. Kobzarev and L. B. Okun, Zh. Eksp. Teor. Fiz., Vol. 67, 1974, p. 3
[29] Ya. B. Zeldovich, I. Yu. Kobzarev and L. B. Okun, Sov. Phys. JETP, Vol. 40, 1975, p. 1.
[30] J. Ellis, “Gauge Theories and Experiments at High Energies,” Proceedings of the 21st Scottish University Summer School, SUSSP Publication, Edinburgh, 1981, p. 201.
[31] J. Stachel, “Thichening the String. I. The String Perfect Dust,” Physical Review D, Vol. 21, No. 8, 1980, pp. 2171-2181. doi:10.1103/PhysRevD.21.2171
[32] P. S. Letelier, “String Cosmologies,” Physical Review D, Vol. 28, No. 10, 1983, pp. 2414-2419. doi:10.1103/PhysRevD.28.2414
[33] C. J. Hogan and M. J. Rees, “Gravitational Interactions of Cosmic Strings,” Nature, Vol. 311, 1984, pp. 109-114. doi:10.1038/311109a0
[34] Y. S. Myung, B. H. Cho, Y. Kim and Y. J. Park, “Entropy Production of Superstrings in Thevery Early Universe,” Physical Review D, Vol. 33, No. 10, 1986, pp. 2944-2947. doi:10.1103/PhysRevD.33.2944
[35] K. D. Krori, T. Chaudhury, C. R. Mahanta and A. Mazumdar, “Some Exact Solutions Instring Cosmology,” General Relativity and Gravitation, Vol. 22, No. 2, 1990, pp. 123-130. doi:10.1007/BF00756203
[36] C. Gundalach and M. E. Ortiz, “Jordan-Brans-Dicke Cosmic Strings,” Physical Review D, Vol. 42, No. 8, 1990, pp. 2521-2526. doi:10.1103/PhysRevD.42.2521
[37] A. Barros and C. Romero, “Cosmic Vacuum Strings and Domain Walls in Brans-Dicke Theory of Gravity,” Journal of Mathematical Physical, Vol. 36, No. 10, 1995, pp. 5800-5804. doi:10.1063/1.531287
[38] I. Yavuz anf I. Yilmaz, “Some Exact Solutions of String Cosmology with Heat Flux in Bianchi Type III Space time,” Astrophysics and Space Science, Vol. 245, No. 1, 1996, pp. 131-138. doi:10.1007/BF00637808
[39] A. Banerjee, N. Banerjee and A. A. Sen, “Static and Nonstatic Global String,” Physical Review D, Vol. 53, No. 10, 1996, pp. 5508-5512. doi:10.1103/PhysRevD.53.5508
[40] D. R. K. Reddy, “Plane Symmetric Cosmic Strings in Lyra Manifold,” Astrophysics and Space Science, Vol. 300, No. 4, 2005, pp. 381-386. doi:10.1007/s10509-005-4716-4
[41] J. M. Nevin, “String Dust Solutions of the Einstein’s Field Equations with Spherical and Static Cylindrical Symmetry,” General Relativity and Gravitation, Vol. 23, No. 3, 1991, pp. 253-260. doi:10.1007/BF00762288
[42] S. Chakraborty, “A Study on Bianchi-IX Cosmological Model,” Astrophysics and Space Science, Vol. 180, No. 2, 1991, pp. 293-303. doi:10.1007/BF00648184
[43] R. Tikekar and L. K. Patel, “Some Exact Solutions of String Cosmology in Bianchi III Spacetime,” General Relativity and Gravitation, Vol. 24, No. 4, 1992, pp. 397-404. doi:10.1007/BF00760415
[44] G. Mohanty, R. R. Sahoo and K. L. Mahanta, “Five Dimensional LRS Bianchi Type-I String Cosmological Model in Saez and Ballester Theory,” Astrophysics and Space Science, Vol. 312, No. 3-4, 2007, pp. 321-324. doi:10.1007/s10509-007-9697-z
[45] G. Mohanty and R. R. Sahoo, “Incompatibility of Five Dimensional Lrs Bianchi Type-V String and Mesonic String Cosmological Models in General Relativity,” Astrophysics and Space Science, Vol. 315, No. 1-4, 2008, pp. 319-322. doi:10.1007/s10509-008-9835-2
[46] R. Bali and R. D. Upadhaya, “An LRS Bianchi Type I Bulk Viscous Fluid String Cosmological Model in General Realtivity,” Astrophysics and Space Science, Vol. 288, No. 3, 2003, pp. 287-292. doi:10.1023/B:ASTR.0000006037.79305.66
[47] X. X. Wang, “Exact Solutions for String Cosmology,” Chinese Physical Letters, Vol. 20, No. 5, 2003, pp. 615-617.
[48] X. X. Wang, “Kantowski-Sachs String Cosmological Model with Bulk Viscosity in General Relativity,” Astrophysics and Space Science, Vol. 298, No. 3, 2005, pp. 433-440. doi:10.1007/s10509-005-5833-9
[49] A. Pradhan and P. Mathur, “Magnetized String Cosmological Model in Cylindrically Symmetric Inhomogeneous Universe-Revisited,” Astrophysics and Space Science, Vol. 318, No. 3-4, 2008, pp. 255-261. doi:10.1007/s10509-008-9931-3
[50] A. Pradhan, “Some Magnetized Bulk Viscous String Cosmological Models in Cylindrically Symmetric Inhomogeneous Universe with Variable Λ Term,” Communications in Theoretical Physics, Vol. 51, No. 2, 2009, pp. 367-374. doi:10.1088/0253-6102/51/2/36
[51] H. Amirashchi and H. Zainuddin, “Magnetized Bianchi Type III Massive String Cosmological Models in General Relativity,” International Journal of Theoretical Physics, Vol. 49, No. 11, 2010, pp. 2815-2828. doi:10.1007/s10773-010-0474-3
[52] S. K. Tripathy. S. K. Sahu and T. R. Routray, “String Cloud Cosmologies for Bianchi Type-III Models with Electromagnetic Field,” Astrophysics and Space Science, Vol. 315, No. 1-4, 2008, pp. 105-110. doi:10.1007/s10509-008-9805-8
[53] C. T. Hill, D. N. Schramm and J. N. Fry, “Cosmological Structure Formation from Soft Topological Defects,” Comments on Nuclear and Particle Physics, Vol. 19, 1989, p. 25.
[54] A. Villenkin, “Gravitational Field of Vacuum Domain Walls,” Physics Letters B, Vol. 133, No. 3-4, 1983, pp. 177-179.
[55] J. Ipser and P. Sikivie, “Gravitationally Repulsive Domain Wall,” Physical Review D, Vol. 30, No. 4, 1984, pp. 712-719. doi:10.1103/PhysRevD.30.712
[56] H. Schmidt and A. Wang, “Plane Domain Walls When Coupled with the Brans-Dicke Scalar Fields,” Physical Review D, Vol. 47, No. 10, 1984, pp. 4425-4432.
[57] L. M. Widrow, “General-Relativistic Domain Walls,” Physical Review D, Vol. 39, No. 12, 1989, pp. 3571-3575. doi:10.1103/PhysRevD.39.3571
[58] G. Goetz, “The Gravitational Field of Plane Symmetric Thick Domain Walls,” Journal of Mathematical Physics, Vol. 31, No. 11, 1990, pp. 2683-2687. doi:10.1063/1.528969
[59] A. Wang, “Gravitational Collapse of Thick Domain Walls: An Analytic Model,” Modern Physics Letters A, Vol. 9, No. 39, 1994, pp. 3605-3609. doi:10.1142/S0217732394003440
[60] F. Rahaman, P. Ghosh, S. Shekhar and S. Mal, “Higher Dimensional Thick Domain Wall in Lyra Geometry,” Astrophysics and Space Science, Vol. 286, No. 3-4, 2003, pp. 373-379. doi:10.1023/A:1026355131560
[61] A. Pradhan, I. Aotemshi and G. P. Singh, “Plane Symmetric Domain Wall in Lyrageometry,” Astrophysics and Space Science, Vol. 288, No. 3, 2003, pp. 315-325. doi:10.1023/B:ASTR.0000006061.77421.c9
[62] F. Rahaman and R. Mukherji, “Domain Walls in Lyra Geometry,” Astrophysics and Space Science, Vol. 288, No. 4, 2003, pp. 389-397. doi:10.1023/B:ASTR.0000005095.28348.69
[63] F. Rahaman, M. Kalam and R. Mandal, “Thin Domain Walls in Lyra Geometry,” Astrophysics and Space Science, Vol. 305, No. 4, 2006, pp. 337-340. doi:10.1007/s10509-006-9063-6
[64] A. Pradhan, K. K. Rai and A. K. Yadav, “Plane Symmetric Bulk Viscous Domain Wall in Lyra Geometry,” Brazilian Journal of Physics, Vol. 37, No. 3b, 2007, pp. 1084-1093.
[65] N. Itoh, “Hydrostatic Equilibrium of Hypothetical Quark Stars,” Progress of Theoretical Physics, Vol. 44, No. 1, 1970, pp. 291-292. doi:10.1143/PTP.44.291
[66] A. R. Bodmer, “Collapsed Nuclei,” Physical Review D, Vol. 4, No. 6, 1971, pp. 1601-1606. doi:10.1103/PhysRevD.4.1601
[67] E. Witten, “Cosmic Separation of Phases,” Physical Review D, Vol. 30, No. 2, 1984, pp. 272-285. doi:10.1103/PhysRevD.30.272
[68] C. Alcock, E. Farhi and A. Olinto, “Strange Stars,” The Astrophysical Journal, Vol. 310, 1986, pp. 261-272.
[69] P. Haensel, J. L. Zdunik and R. Schaefer, “Strange Quark stars,” Astronomy & Astrophysics, Vol. 160, No. 1, 1986, pp. 121-128.
[70] J. Kapusta, “Finite Temperature Field Theory,” Cambridge University Press, Cambridge, 1994.
[71] H. Sotani, K. Kohri and T. Harada, “Restricting Quark Matter Models by Gravitational Wave Observation,” Physical Review D, Vol. 69, No. 8, 2004, Article ID: 084008. doi:10.1103/PhysRevD.69.084008
[72] I. Yilmaz, “Domain Walls Solutions in the Non-Static and Stationary Godel Universes with a Cosmological Constant,” Physical Review D, Vol. 71, No. 10, 2005, Article ID: 103503. doi:10.1103/PhysRevD.71.103503
[73] I. Yilmaz, “String Cloud and Domain Walls with Quark Matter in 5-D Kaluza-Klein Cosmological Model,” General Relativity and Gravitation, Vol. 38, No. 9, 2006, pp. 1397-1406. doi:10.1007/s10714-006-0322-1
[74] K. S. Adhav, A. S. Nimkar and M. V. Dawande, “String Cloud and Domain walls with Quark Matter in n-Dimensional Kaluza-Klein Cosmological Model,” International Journal of Theoretical Physics, Vol. 47, No. 7, 2008, pp. 2002-2010. doi:10.1007/s10773-007-9644-3
[75] G. S. Khadekar, R. Wanjari and C. Ozel, “Domain Wall with Strange Quark Matter in Kaluza-Klein Type Cosmological Model,” International Journal of Theoretical Physics, Vol. 48, No. 9, 2009, pp. 2550-2557. doi:10.1007/s10773-009-0040-z
[76] K. L. Mahanta, S. K. Biswal, P. K. Sahoo and M. C. Adhikary, “String Cloud with Quark Matter in Self-Creation Cosmology,” International Journal of Theoretical Physics, Vol. 51, No. 5, 2012, pp. 1538-1544. doi:10.1007/s10773-011-1031-4
[77] R. Bali, “Magnetized Cosmological Model,” International Journal of Theoretical Physics, Vol. 25, No. 7, 1986, pp. 755-761. doi:10.1007/BF00668721
[78] M. S. Berman, “A Special Law of Variation for Hubble’s Parameter,” Il Nuovo Cimento B, Vol. 74, No. 2, 1983, pp. 182-186.
[79] N. Okuyama and K. Maeda, “Domain Wall Dynamics in Brane World and Nonsingular Cosmological Models,” Physical Review D, Vol. 70, No. 6, 2004, Article Id: 064030. doi:10.1103/PhysRevD.70.064030
[80] B. B. Back, et al., “The PHOBOS Perspective on Discoveries at RHIC,” Nuclear Physics A, Vol. 757, No. 1-2, 2005, pp. 28-101.
[81] J. Adam, et al., “Experimental and Theoretical Challenges in the Search for the Quark-Gluon Plasma: The STAR Collaboration’s Critical Assessment of the Evidence from RHIC Collisions,” Nuclear Physics A, Vol. 757, No. 1-2, 2005, pp. 102-183.
[82] C. B. Collins, E. N. Glass and D. A. Wilkinson, “Exact Spatially Homogeneous Cosmologies,” General Relativity and Gravitation, Vol. 12, No. 10, 1980, pp. 805-823. doi:10.1007/BF00763057