A Systematization for One-Loop 4D Feynman Integrals-Different Species of Massive Fields

Show more

References

[1] O. A. Battistel and G. Dallabona, “Scale Ambiguities in Perturbative Calculations and the Value for the Radiatively Induced Chern-Simons Term in Extended QED,” Physical Review D, Vol. 72, No. 4, 2005, Article ID: 045009.

[2] O. A. Battistel and G. Dallabona, “A Systematization for One-Loop 4D Feynman Integrals,” The European Physical Journal C, Vol. 45, No. 3, 2006, pp. 721-743.
doi:10.1140/epjc/s2005-02437-0

[3] G. Passarino and M. Veltman, “One Loop Corrections for e^{+}e^{-} Annihilation into μ^{+} μ^{-} in the Weinberg Model,” Nuclear Physics B, Vol. 160, No. 1, 1979, pp. 151-207.
doi:10.1016/0550-3213(79)90234-7

[4] W. L. van Neerven and J. A. Vermaseren, “Large Loop Integrals,” Physics Letters B, Vol. 137, No. 3-4, 1984, pp. 241-244.

[5] G. J. Oldenborgh and J. A. Vermaseren, “New Algorithms for One Loop Integrals,” Zeitschrift fur Physik C Particles and Fields, Vol. 46, No. 3, 1990, pp. 425-437.

[6] A. I. Davydychev, “A Simple Formula for Reducing Feynman Diagrams to Scalar Integrals,” Physics Letters B, Vol. 263, No. 1, 1991, pp. 107-111.

[7] Z. Bern, L. J. Dixon and D. A. Kosower, “Dimensionally Regulated One Loop Integrals,” Physics Letters B, Vol. 302, No. 2-3, 1993, pp. 299-308.

[8] O. V. Tasarov, “Connection between Feynman Integrals Having Different Values of the Space-Time Dimension,” Physical Review D, Vol. 54, No. 10, 1996, pp. 6479-6490.

[9] R. G. Stuart, “Algebraic Reduction of One Loop Feynman Diagrams to Scalar Integrals,” Computer Physics Communications, Vol. 48, No. 3, 1988, pp. 367-389.
doi:10.1016/0010-4655(88)90202-0

[10] J. Campbell, E. Glover and D. Miller, “One Loop Tensor Integrals in Dimensional Regularization,” Nuclear Physics B, Vol. 498, No. 1-2, 1997, pp. 397-442.
doi:10.1016/S0550-3213(97)00268-X

[11] G. Devaraj and R. G. Stuart, “Reduction of One Loop Tensor Form-Factors to Scalar Integrals: A General Scheme,” Nuclear Physics B, Vol. 519, No. 1-2, 1998, pp. 483-513. doi:10.1016/S0550-3213(98)00035-2

[12] J. Fleischer, F. Jegerlehner and O. V. Tasarov, “Algebraic Reduction of One Loop Feynman Graph Amplitudes,” Nuclear Physics B, Vol. 566, No. 1-2, 2000, pp. 423-440.
doi:10.1016/S0550-3213(99)00678-1

[13] G.’t Hooft and M. Veltman, “Scalar One Loop Integrals,” Nuclear Physics B, Vol. 153, 1979, pp. 365-401.
doi:10.1016/0550-3213(79)90605-9

[14] T. Binoth, J. P. Guillet and G. Heinrich, “Reduction Formalism for Dimensionally Regulated One-Loop N-Point Integrals,” Nuclear Physics B, Vol. 572, No. 1-2, 2000, pp. 361-386. doi:10.1016/S0550-3213(00)00040-7

[15] T. Binoth, J. P. Guillet, G. Heinrich and C. Schubert, “Calculation of One Loop Hexagon Amplitudes in the Yukawa Model,” Nuclear Physics B, Vol. 615, No. 1-3, 2001, pp. 385-401. doi:10.1016/S0550-3213(01)00436-9

[16] A. Denner and S. Dittmaier, “Reduction of One Loop Tensor Five Point Integrals,” Nuclear Physics B, Vol. 658, No. 1-2, 2003, pp. 175-202.
doi:10.1016/S0550-3213(03)00184-6

[17] G. Duplancic and B. Nizic, “Reduction Method for Dimensionally Regulated One Loop N Point Feynman Integrals,” European Physical Journal, Vol. 35, 2004, pp. 105-118.

[18] G. Duplancic and B. Nizic, “Dimensionally Regulated One Loop Box Scalar Integrals with Massless Internal Lines,” European Physical Journal, Vol. 20, 2001, pp. 357-370.

[19] G. Duplancic and B. Nizic, “IR Finite One Loop Box Scalar Integral with Massless Internal Lines,” European Physical Journal, Vol. 24, 2002, pp. 385-391.

[20] F. del Aguila and R. Pittau, “Recursive Numerical Calculus of One-Loop Tensor Integrals,” Journal of High Energy Physics, Vol. 7, 2004, p. 17.

[21] W. T. Giele and E. W. N. Glover, “A Calculational Formalism for One Loop Integrals,” Journal of High Energy Physics, Vol. 8, 2004, p. 29.

[22] R. Britto and B. Feng, “Integral Coefficients for One-Loop Amplitudes,” Journal of High Energy Physics, Vol. 2, 2008, p. 95.

[23] A. Denner and S. Dittmaier, “Reduction Schemes for One-Loop Tensor Integrals,” Nuclear Physics B, Vol. 734, No. 1-2, 2006, pp. 62-115.
doi:10.1016/j.nuclphysb.2005.11.007

[24] T. Binoth, J. Ph. Guillet, G. Heinrich, E. Pilon and C. Schubert, “An Algebraic/Numerical Formalism for One-Loop Multi-Leg Amplitudes,” Journal of High Energy Physics, Vol. 10, 2005, p. 15.

[25] Y. Kurihara, “Dimensionally Regularized One-Loop Tensor-Integrals with Massless Internal Particles,” European Physical Journal, Vol. 45, No. 2, 2006, pp. 427-444.
doi:10.1140/epjc/s2005-02428-1

[26] C. Anastasiou, E. W. Nigel Glover and C. Oleari, “Scalar One Loop Integrals Using the Negative Dimension Approach,” Nuclear Physics B, Vol. 572, No. 1-2, 2000, pp. 307-360. doi:10.1016/S0550-3213(99)00637-9

[27] P. Mastrolia, G. Ossola, C. G. Papadopoulos and R. Pittau, “Optimizing the Reduction of One-Loop Amplitudes,” Journal of High Energy Physics, Vol. 6, 2008, p. 30.

[28] R. Keith Ellis and G. Zanderighi, “Scalar One-Loop Integrals for QCD,” Journal of High Energy Physics, Vol. 2, 2008, p. 2.

[29] G. Ossola, C. G. Papadopoulos and R. Pittau, “On the Rational Terms of the One-Loop Amplitudes,” Journal of High Energy Physics, Vol. 5, 2008, p. 4.

[30] O. A. Battistel, “Uma Nova Estrategia Para Manipula?oes e Cálculos Envolvendo Divergências em T.Q.C.,” Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, 1999.

[31] Y. Sun and H.-R. Chang, “One Loop Integrals Reduction,” 2012.