WJNST  Vol.2 No.4 , October 2012
Measurement of Natural Radioactivity in Sand Samples Collected from Ad-Dahna Desert in Saudi Arabia
Abstract: Natural radioactivity is a source of continuous exposure to human beings. The natural radioactivity due to the presence of 226Ra, 232Th and 40K in sand samples collected from Ad-Dahna was measured by means of HPGe. The measured activity concentrations of radionuclides were compared with the worldwide reported data. Mean measured activity concentrations of 226Ra, 232Th and 40K varied between 16.2 - 30.6, 15.8 - 36.7 and 285.3 - 533.2 Bq·kg–1 respectively with a mean value of 23.4 ± 4.3 Bq·kg–1, 29.7 ± 5.9 Bq·kg–1 and 380 ± 65 Bq·kg–1 respectively. Mean values of radium equivalent activity, absorbed dose rate and external radiation hazard index were 106 ± 8 Bq·kg–1, 51.4 nGy·h–1 and 0.29 respectively. The annual effective radiation dose was calculated to be 0.32 mSv·y–1. The Raeq values of sand samples are lower than the limit of 370 Bq·kg–1, equivalent to a gamma dose of 1.5 mSv·yr–1.This study shows that the measured sand samples do not pose any significant source of radiation hazard and are safe for use in building materials.
Cite this paper: A. Alaamer, "Measurement of Natural Radioactivity in Sand Samples Collected from Ad-Dahna Desert in Saudi Arabia," World Journal of Nuclear Science and Technology, Vol. 2 No. 4, 2012, pp. 187-191. doi: 10.4236/wjnst.2012.24029.

[1]   M. J. Willson, “Anthropogenic and Naturally Occurring Radioactive Materials Detected on Radiological Survey of Properties in Monticello, Utah. Environmental Health Physics,” 26th Midyear Topical Meeting, 24-28 January 1993, p. 564.

[2]   United Nations Scientific Committee on the Effects of Atomic Radiation, “Sources and Effects of Ionising Radiation,” Unscear Report, New York, 1993.

[3]   United Nations Scientific Committee on the Effects of Atomic Radiation, “Exposures from Natural Radiation Sources,” UNSCEAR Report, New York, 2000.

[4]   M. Tzortzis, E. Svoukis and H. Tsertos, “A Comprehensive Study of Natural Gamma Radioactivity Levels and Associated Dose Rates from Surface Soils in Cyprus,” Radiation Protection Dosimetry, Vol. 109, No. 3, 2004, pp. 217-224. doi:10.1093/rpd/nch300

[5]   P. McDonald, G. T. Cook and M. S. Baxter, “Natural and Anthropogenic Radioactivity in Coastal Regions of the UK,” Radiation Protection Dosimetry, Vol. 45, No. 1-4, 1992, pp. 707-710.

[6]   S. Chong and G. U. Ahmad, “Gamma Activity of Some Building Materials in West Malaysia,” Health Physics, Vol. 43, No. 2, 1982, pp. 272-273.

[7]   G. Sciocchetti, F. Scacco, P. G. Baldassini, L. Monte and R. Sarao, “Indoor Measurements of Airborne Natural Radioactivity in Italy,” Radiation Protection Dosimetry, Vol. 7, No. 1-4, 1984, pp. 347-351.

[8]   M. Chung-Keung, L. Shun-Yin, A. Shui-Chun and N. Wai-Kwok, “Radionuclide Contents in Building Materials in Hong Kong,” Health Physics, Vol. 57, No. 3, 1989, pp. 397-401.

[9]   A. Malanca, V. Pessina and G. Dallara, “Radionuclide Content of Building Materials and Gamma Ray Dose Rates in Dwellings of Rio Grande Do Norte, Brazil,” Radiation Protection Dosimetry, Vol. 48, No. 2, 1993, pp. 199-203.

[10]   A. J. A. H. Khatibeh, A. Maly, N. Ahmad and Matiullah, “Natural Radioactivity in Jordanian Construction Materials,” Radiation Protection Dosimetry, Vol. 69, No. 2, 1997, pp. 143-147. doi:10.1093/oxfordjournals.rpd.a031895

[11]   M. I. Chowdury, M. N. Alam and A. K. S. Ahmed, “Concentration of Radionuclides in Building and Ceramic Materials of Bangladesh and Evaluation of Radiation Hazard,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 231, No. 1-2, 1998, pp. 117-123. doi:10.1007/BF02388016

[12]   A. M. El-Arabi, “Natural Radioactivity in Sand Used in Thermal Therapy at the Red Sea Coast,” Journal of Environmental Radioactivity, Vol. 81, No. 1, 2005, pp. 11-19. doi:10.1016/j.jenvrad.2004.11.002

[13]   X. W. Lu and X. L. Zhang, “Measurement of Natural Radioactivity in Sand Samples Collected from the Baoji Weihe Sands Park, China,” Environmental Geology, Vol. 50, No. 7, 2006, pp. 977-982.

[14]   A. S. Alaamer, “Assessment of Radiological Hazards Owing to Natural Radioactivity Measured in Soil of Riyadh, Saudi Arabia,” Turkish Journal of Engineering & Environmental Sciences, Vol. 32, 2008, pp. 229-234.

[15]   U. Cevik, N. Damla, A. I. Koby, N. Celik, A. Celik and A. A. Van, “Assessment of Natural Radioactivity of Sand Used in Turkey,” Journal of Radiological Protection, Vol. 29, No. 1, 2009, p. 61. doi:10.1088/0952-4746/29/1/004

[16]   R. Trevisi, M. Bruno, C. Orlando, R. Ocone, C. Paolelli, M. Amici, A. Altieri and B. Antonelli, “Radiometric Characterization of More Representative Natural Building Materials in the Province of Rome,” Radiation Protection Dosimetry, Vol. 113, 2005, pp. 168-172. doi:10.1093/rpd/nch438

[17]   G. Gonzalez-Chornet and J. Gonzalez-Labajo, “Natural Radioactivity in Beach Sands from Donana National Park and Mazagon (SPAIN),” Radiation Protection Dosimetry, Vol. 112, No. 2, 2004, pp. 307-310. doi:10.1093/rpd/nch397

[18]   Matiullah, A. Ahad, S. ur Rehman, S. ur Rehman and M. Fahee, “Measurement of Radioactivity in the Soil of Bahawalpur Division, Pakistan,” Radiation Protection Dosimetry, Vol. 112, No. 3, 2004, pp. 443-447. doi:10.1093/rpd/nch409

[19]   T. Y. Chang, W. L. Cheng and P. S. Weng, “Potassium Uranium, and Thorium Contents in Building Material of Taiwan,” Health Physics, Vol. 27, No. 4, 1974, pp. 385387.

[20]   J. G. Ackers, J. F. Den-Boer, P. De-Jong and R. A. Wolschrijn, “Radioactivity and Radon Exhalation Rates of Building Materials in the Netherlands,” Science of the Total Environment, Vol. 45, 1985, pp. 151-156. doi:10.1016/0048-9697(85)90215-3

[21]   G. Espinosa, J. I. Golzarri, I. Gamboa and I. Jacobson, “Natural Radioactivity in Mexican Building Material by SSNTD,” Nuclear Tracks and Radiation Measurements, Vol. 12, No. 1-6, 1986, pp. 767-770. doi:10.1016/1359-0189(86)90699-0

[22]   P. Hayumbu, M. B. Zaman, N. C. H. Lubaba, S. S. Munsanje and D. Nuleya, “Natural Radioactivity in Zambian Building Materials Collected from Lusaka,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 199, No. 3, 1995, pp. 229-238. doi:10.1007/BF02162371

[23]   A. N. Matiullah and A. J. A. J. Hussain, “Natural Radioactivity in Jordanian Soil and Building Materials and the Associated Radiation Hazards,” Journal of Environmental Radioactivity, Vol. 39, No. 1, 1998, pp. 9-22. doi:10.1016/S0265-931X(97)00046-5

[24]   V. Kumar, T. V. Ramachandran and R. Prasad, “Natural Radioactivity of Indian Building Materials and By-Products,” Applied Radiation and Isotopes, Vol. 51, No. 1, 1999, pp. 93-96. doi:10.1016/S0969-8043(98)00154-7

[25]   S. Stoulos, M. Manolopoulou and C. Papastefanou, “Assessment of Natural Radiation Exposure and Radon Exhalation from Building Materials in Greece,” Journal of Environmental Radioactivity, Vol. 69, No. 3, 2003, pp. 225-240. doi:10.1016/S0265-931X(03)00081-X

[26]   K. Khalid, P. Akhter and S. D. Orfi, “Estimation of Radiation Doses Associated with Natural Radioactivity in Sand Samples of the North Western Areas of Pakistan Using Monte Carlo Simulation,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 265, No. 3, 2005, pp. 371-375. doi:10.1007/s10967-005-0835-1

[27]   F. O. Brigido, E. N. Montalvan and Z. J. Tomas, “Natural Radioactivity in Some Building Materials in Cuba and Their Contribution to the Indoor Gamma Dose Rate,” Radiation Protection Dosimetry, Vol. 113, No. 2, 2005, pp. 218-222. doi:10.1093/rpd/nch434

[28]   M. Ngachin, M. Garavaglia, C. Giovani, M. KwatoNjock G. and A. Nourreddine, “Assessment of Natural Radioactivity and Associated Radiation Hazards in Some Cameroonian Building Materials,” Radiation Measurements, Vol. 42, No. 1, 2007, pp. 61-67. doi:10.1016/j.radmeas.2006.07.007