JBNB  Vol.3 No.4 , October 2012
Preparation of Porous Poly(3-Hydroxybutyrate) Films by Water-Droplet Templating
Porous resorbable implants are of great interest since they may deliver bioactives or drugs, facilitate the transport of body fluids or degradation products and provide a favorable environment for cell attachment and growth. In this work we report on a method using concentrated emulsions to template interconnected solid foam materials and to produce highly porous poly(3-hydroxybutyrate) (PHB) materials. Porous PHB films were cast made from water-in-oil template emulsions including Span 80 and lithium sulphate. The films were characterized by SEM-EDX and DMA. The water uptake of the films was recorded in order to determine the fraction water available pores. The results show that the addition of lithium sulphate allows a fine tuning of the film morphology with respect to porosity and interconnected porous structure. The film porosity was determined to 51% ± 3%, 52% ± 3% and 45% ± 3% for the films made with 0%, 2.9% and 14.3% lithium sulphate in the template emulsion, respectively. The fraction water available pores was significantly lower, 11% ±3%, 38% ±12% and 48% ± 7% for films with 0%, 2.9% and 14.3% litium sulphate respectively. Differences in fraction water available pores and total porosity for the films reflects the film morphology and differences in pore interconnection.

Cite this paper
A. Bergstrand, H. Andersson, J. Cramby, K. Sott and A. Larsson, "Preparation of Porous Poly(3-Hydroxybutyrate) Films by Water-Droplet Templating," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4, 2012, pp. 431-439. doi: 10.4236/jbnb.2012.34043.
[1]   L. Lu, S. J. Peter, M. D. Lyman, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer and A. G. Mikos, “In Vitro and in Vivo Degradation of Porous Poly(dl-lactic-co-glycolic Acid) Foams,” Biomaterials, Vol. 21, No. 18, 2000, pp. 1837-1845. doi:10.1016/S0142-9612(00)00047-8

[2]   A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacanti and R. Langer, “Laminated Three-Dimensional Biodegradable Foams for Use in Tissue Engineering,” Biomaterials, Vol. 14, No. 5, 1993, pp. 323-330. doi:10.1016/0142-9612(93)90049-8

[3]   C. Vaquette, C. Frochot, R. Rahouadj and X. Wang, “An Innovative Method to Obtain Porous Poly(L-lactic Acid) Scaffolds with Highly Spherical and Interconnected Pores,” Journal of Biomedical Materials Research, Part B, Vol. 86B, No. 1, 2008, pp. 9-17. doi:10.1002/jbm.b.30982

[4]   H. Lo, M. S. Ponticiello and K. W. Leong, “Fabrication of Controlled Release Biodegradable Foams by Phase Separation,” Tissue Engineering, Vol. 1, No. 1, 1995, pp. 15-28. doi:10.1089/ten.1995.1.15

[5]   A. C. R. Grayson, I. S. Choi, B. M. Tyler, P. P. Wang, H. B rem, M. J. Cima and R. Langer, “Multi-Pulse Drug Delivery from a Resorbable Polymeric Microchip Device”, Nature Materials, Vol. 2, No. 11, 2003, pp. 767-772. doi:10.1038/nmat998

[6]   W. H. Ryu, M. Vyakarnam, R. S. Greco, F. B. Prinz and R. J. Fasching, “Fabrication of Multi-Layered Biodegradable Drug Delivery Device Based on Micro-Structuring of PLGA Polymers,” Biomedical Microdevices, Vol. 9, No. 6, 2007, pp. 845-853. doi:10.1007/s10544-007-9097-8

[7]   E. M. Christenson, W. Soofi, J. L. Holm, N. R. Cameron and A. G. Mikos, “Biode-gradable Fumarate-Based Poly-High Internal Phase Emulsions (HIPE) as Tissue Engineering Scaffolds,” Biomacromolecules, Vol. 8, No. 12, 2007, pp. 3806-3814. doi:10.1021/bm7007235

[8]   Y. Lumelsky and M. S. Silverstein, “Biodegradable Porous Polymers through Emulsion Templating,” Macromolecules, Vol. 42, No. 5, 2009, pp. 1627-1633. doi:10.1021/ma802461m

[9]   R. N. Reusch, A. W. Sparrow and J. Gardiner, “Transport of Poly-β-Hydroxybutyrate in Human Plasma,” Biochimica et Biophysica Acta, Vol. 1123, No. 1, 1992, pp. 33-40.

[10]   T. Saito, K. Tomita, K. Juni and K. Ooba, “In Vivo and in Vitro degradation of Poly(3-Hydroxybutyrate) in Rat”, Biomaterials, Vol. 12, No. 3, 1991, pp. 309-312. doi:10.1016/0142-9612(91)90039-D

[11]   M. Aberg, C. Ljungberg, E. Edin, H. Millqvist, E. Nordh, A. Theorin, G. Terenghi and M. Wiberg, “Clinical Evaluation of a Resorbable Wrap-Around Implant as an Alternative to Nerve Repair: A Prospective, Assessor-Blinded, Randomised Clinical Study of Sensory, Motor and Functional Recovery after Peripheral Nerve Repair,” Journal of Plastic, Reconstructive and Aesthetic Surgery, Vol. 62, No. 11, 2009, pp. 1503-1509. doi:10.1016/j.bjps.2008.06.041

[12]   P. N. Mohanna, R. C. Young, M. Wiberg and G. Terenghi, “A Composite Poly-Hydroxybutyrate-Glial Growth Factor Conduit for Long Nerve Gap Repairs,” Journal of Anatomy, Vol. 203, No. 6, 2003, pp. 553-565. doi:10.1046/j.1469-7580.2003.00243.x

[13]   T. Freier, C. Kunze, C. Nischan, S. Kramer, K. Sternberg, M. Sass, U. T. Hopt and K.-P. Schmitz, “In Vitro and in Vivo Degradation Studies for Development of a Biodegradable Patch Based on Poly(3-Hydroxybutyrate) ,” Biomaterials, Vol. 23, No. 13, 2002, pp. 2649-2657. doi:10.1016/S0142-9612(01)00405-7

[14]   Z. Cai, “Biocompatibility and Biodegradation of Novel PHB Porous Substrates with Controlled Multi-Pore Size by Emulsion Templates Method,” Journal of Materials Science: Materials in Medicine, Vol. 17, No. 12, 2006, pp. 1297-1303. doi:10.1007/s10856-006-0604-x

[15]   S. Edrud, M. Petersson and M. Stading, “DMA Analysis of Biopolymer Film Swelling,” Annual Transactions of the Nordic Rheology Soceity, Vol. 11, 2003, pp. 155-156.

[16]   N. R. Cameron, “High Internal Phase Emulsion Templating as a Route to Well-Defined Porous Polymers,” Polymer, Vol. 46, No. 5, 2005, pp. 1439-1449. doi:10.1016/j.polymer.2004.11.097

[17]   M. Y. Koroleva and E. V. Yurtov, “Effect of Ionic Strength of Dispersed Phase on Ostwald Ripening in Water-in-Oil Emulsions,” Colloid Journal, Vol. 65, No. 1, 2003, pp. 40-43. doi:10.1023/A:1022362807131

[18]   S. Ji, Q. Gu and B. Xia, “Porosity Dependence of Mechanical Properties of Solid Materials,” Journal of Materials Science, Vol. 41, No. 6, 2006, pp. 1757-1768. doi:10.1007/s10853-006-2871-9

[19]   C. Pedros-Alio, J. Mas and R. Guerrero, “The Influence of Poly-β-Hydroxybutyrate Accumulation on Cell Volume and Buoyant Density in Alcaligenes Eutrophus,” From Archives of Microbiology, Vol. 143, No. 2, 1985, pp. 178-184. doi:10.1007/BF00411044